Optimal Cooling Operation of a Single Family House Model Equipped with Renewable Energy Facility by Linear Programming

Author(s):  
Younggy Shin ◽  
Eui-Jong Kim ◽  
Kyoung-ho Lee
2021 ◽  
Vol 10 (2) ◽  
pp. 317-331
Author(s):  
Muthalagappan Narayanan

With the increasing integration of decentral renewable energy systems in the residential sector, the opportunity to enhance the control via model predictive control is available. In this article, the main focus is to investigate the objective function of the model predictive controller (MPC) of an integrated thermal-electrical renewable energy system consisting of photovoltaics, solar thermal collectors, fuel cell along with auxiliary gas boiler and electricity grid using electrical and thermal storage in a single-family house. The mathematical definition of the objective function and the depth of detailing the objectives are the prime focus of this particular article. Four different objective functions are defined and are investigated on a day-to-day basis in the selected six representative days of the whole year for the single-family house in Ehingen, Germany with a white-box simulation model simulated using TRNSYS and MATLAB. Using the clustering technique then the six representative days are weighted extrapolated to a whole year and the outcomes of the whole year MPC implementation are estimated. The results show that the detailing of the mathematical model, even though is time and personnel consuming, does have its advantages. With the detailed objective function, 9% more solar thermal fraction; 32% less power-to-heat at an expense of 32% more gas boiler usage; 6% more thermal system effectiveness along with 10% increased total self-consumption fraction with 16% decrease in space heating demand, 492 kWh more battery usage and 66% reduced fuel cell production is achieved by the MPC in comparison to the status quo controller. Except for the effectiveness of the thermal system with increased gas boiler usage, which occurs due to less power-to-heat, the detailed objective function in comparison to the simple mathematical definition does evidently increase the smartness of the MPC.


2019 ◽  
Vol 28 (3) ◽  
pp. 394-404
Author(s):  
Urszula Pawlak ◽  
Marcin Pawlak

The paper presents the energy performance of a single-family house located in Domaszowice, the Kielce poviat. The analyzed object has been put into use in 2010 year. Due to the devices using non-renewable energy sources, installed in the building for the needs of hot tap water and central heating, for servicing, which human presence is necessary, two thermomodernizations were performed. The purpose of the calculations was to indicate the financial benefi ts, i.e. to reduce the costs of maintaining the home and to provide its residents with proper comfort of use of the building, bearing in mind also the health aspect. Changes have been proposed to reduce the demand for non-renewable primary energy of EP using renewable energy sources. As a result, the energy-efficient building that meets WT 2017 was obtained. The Certo 2015 program was used in the analysis.


Buildings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 215
Author(s):  
Bojana Petrović ◽  
Xingxing Zhang ◽  
Ola Eriksson ◽  
Marita Wallhagen

The objective of this paper was to explore long-term costs for a single-family house in Sweden during its entire lifetime. In order to estimate the total costs, considering construction, replacement, operation, and end-of-life costs over the long term, the life cycle cost (LCC) method was applied. Different cost solutions were analysed including various economic parameters in a sensitivity analysis. Economic parameters used in the analysis include various nominal discount rates (7%, 5%, and 3%), an inflation rate of 2%, and energy escalation rates (2–6%). The study includes two lifespans (100 and 50 years). The discounting scheme was used in the calculations. Additionally, carbon-dioxide equivalent (CO2e) emissions were considered and systematically analysed with costs. Findings show that when the discount rate is decreased from 7% to 3%, the total costs are increased significantly, by 44% for a 100-year lifespan, while for a 50 years lifespan the total costs show a minor increase by 18%. The construction costs represent a major part of total LCC, with labor costs making up half of them. Considering costs and emissions together, a full correlation was not found, while a partial relationship was investigated. Results can be useful for decision-makers in the building sector.


Buildings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 100 ◽  
Author(s):  
Elaheh Jalilzadehazhari ◽  
Georgios Pardalis ◽  
Amir Vadiee

The majority of the single-family houses in Sweden are affected by deteriorations in building envelopes as well as heating, ventilation and air conditioning systems. These dwellings are, therefore, in need of extensive renovation, which provides an excellent opportunity to install renewable energy supply systems to reduce the total energy consumption. The high investment costs of the renewable energy supply systems were previously distinguished as the main barrier in the installation of these systems in Sweden. House-owners should, therefore, compare the profitability of the energy supply systems and select the one, which will allow them to reduce their operational costs. This study analyses the profitability of a ground source heat pump, photovoltaic solar panels and an integrated ground source heat pump with a photovoltaic system, as three energy supply systems for a single-family house in Sweden. The profitability of the supply systems was analysed by calculating the payback period (PBP) and internal rate of return (IRR) for these systems. Three different energy prices, three different interest rates, and two different lifespans were considered when calculating the IRR and PBP. In addition, the profitability of the supply systems was analysed for four Swedish climate zones. The analyses of results show that the ground source heat pump system was the most profitable energy supply system since it provided a short PBP and high IRR in all climate zones when compared with the other energy supply systems. Additionally, results show that increasing the energy price improved the profitability of the supply systems in all climate zones.


1991 ◽  
Vol 18 (6) ◽  
pp. 893-903 ◽  
Author(s):  
Inderjit Singh ◽  
Donald S. Mavinic

Samples were taken from 72 high-rise apartment suites (6 suites in 12 individual high-rise towers) and 60 single-family houses located within the Greater Vancouver Regional District. The influence of the following factors on trace metal concentrations in 1-L first-flush drinking water samples and “running” hot water samples was investigated: building height, location, plumbing age, type of plumbing, and type of building. Results of this survey show that with the exception of building height, all factors had a correlation with one or more of the trace metals investigated. The trace metals examined were lead, copper, iron, and zinc. Lead was influenced primarily by building type, copper by plumbing age and type of plumbing, and iron by location. Elevated lead levels were associated with high-rise samples. New copper plumbing systems resulted in high copper levels. Highest iron levels in the drinking water were measured in the East Vancouver location. Zinc did not show a distinct correlation with any of the factors investigated. Brass faucets were the primary source of zinc in tap water. They also contributed substantially to the lead detected in the 1-L first-flush sample. Metal concentrations measured in the high-rise and house samples were compared with the U.S. Environmental Protection Agency's (USEPA) maximum contaminant levels (MCLs) and the proposed “no-action” level for lead. In high-rise samples, the 0.01 mg/L “no-action” level proposed for lead was exceeded in 43% of the samples, and 62% of the samples exceeded the current 1.0 mg/L MCL standard for copper. In single-family house samples, these values were 47% and 73%, respectively. The average lead concentrations were 0.020 mg/L for all high-rise samples and 0.013 mg/L for house samples. Regulatory levels stated above would still be exceeded in 6% of the cases for lead and 9% of the cases for copper, even after prolonged flushing of the tap in a high-rise building. In all cases associated with single-family houses, flushing the cold water tap for 5 minutes was successful in achieving compliance levels. Key words: aggressive water, compliance, corrosive, drinking water, first-flush, GVRD, high-rise, single-family house, trace metals, USEPA.


2021 ◽  
pp. 84-87
Author(s):  
Alejandro Beals ◽  
Loreto Lyon

Between 1963 and 1966 Emilio Duhart (1917-2006) worked on the design of this single-family house in what used to be the outskirts of Santiago. During this period, a series of younger collaborators worked on the project, transforming it continuously. Now, confronted with the task of refurbishing the house, we trace back and try to understand the project development by researching archival material. However, it is the process of physically dismantling damaged fabric – almost everything, besides the concrete structure – that really reveals the main principles behind the whole design process. A silent dialogue with architects already gone, which provides the guidelines to write just another chapter in the life of this structure.


Sign in / Sign up

Export Citation Format

Share Document