NUMERICAL ANALYSIS OF FLOW RATE PERFORMANCE OF COOLING FAN FOR SMALL-SCALE GENERATOR INSTALLED ON SHELTER VEHICLE

2017 ◽  
Vol 22 (4) ◽  
pp. 48-54
Author(s):  
C.H. Lee ◽  
Y.J. You ◽  
J.E. Choi
2008 ◽  
Vol 22 (10) ◽  
pp. 1870-1875
Author(s):  
Tae In Kang ◽  
Cheol O. Ahn ◽  
In Soo Seo ◽  
Sang Hwan Lee

Author(s):  
Dong-Il Kim ◽  
Ki-So Bok ◽  
Han-Bae Lee

To seek the fan operating point on a cooling system with fans, it is very important to determine the system impedance curve and it has been usually examined with the fan tester based on ASHRAE standard and AMCA standard. This leads to a large investment in time and cost, because it could not be executed until the system is made actually. Therefore it is necessary to predict the system impedance curve through numerical analysis so that we could reduce the measurement time and effort. This paper presents how the system impedance curve (pressure drop curve) is computed by CFD in substitute for experiment. In reverse order to the experimental principle of the fan tester, pressure difference was adopted first as inlet and outlet boundary conditions of the system and then flow rate was calculated. After determining the system impedance curve, it was compared with experimental results. Also the computational domain of the system was investigated to minimize computational time.


2021 ◽  
Vol 13 (20) ◽  
pp. 11295
Author(s):  
Ali Babaeebazaz ◽  
Shiva Gorjian ◽  
Majid Amidpour

In this study, a small-scale two-stage multi-stage flash (MSF) desalination unit equipped with a vacuum pump and a solar parabolic collector (PDC) with a conical cavity receiver were integrated. To eliminate the need for heat exchangers, a water circulation circuit was designed in a way that the saline feedwater could directly flow through the receiver of the PDC. The system’s performance was examined during six days in July 2020, from 10:00 a.m. to 3:00 p.m., under two distinct scenarios of the MSF desalination operation under the vacuum (−10 kPa) and atmospheric pressure by considering three saline feedwater water flow rates of 0.7, 1 and 1.3 L/min. Furthermore, the performance of the solar PDC-MSF desalination plant was evaluated by conducting energy and exergy analyses. The results indicated that the intensity of solar radiation, which directly affects the top brine temperature (TBT), and the values of the saline feedwater flow rate have the most impact on productivity. The maximum productivity of 3.22 L per 5 h in a day was obtained when the temperature and saline feedwater flow rate were 94.25 °C (at the maximum solar radiation of 1015.3 W/m2) and 0.7 L/min, respectively, and the MSF was under vacuum pressure. Additionally, it was found that increasing the feedwater flow rate from 0.7 to 1.3 L/min reduces distillate production by 76.4% while applying the vacuum improves the productivity by about 34% at feedwater flow rate of 0.7 L/min. The exergy efficiency of the MSF unit was obtained as 0.07% with the highest share of exergy destruction in stages. The quality parameters of the produced distillate including pH, TDS, EC and DO were measured, ensuring they lie within the standard range for drinking water. Moreover, the cost of freshwater produced by the MSF plant varied from 37 US$/m3 to 1.5 US$/m3 when the treatment capacity increased to 8000 L/day.


Mechanik ◽  
2018 ◽  
Vol 91 (7) ◽  
pp. 606-608
Author(s):  
Stanisław Wrzesień ◽  
Michał Frant ◽  
Maciej Majcher

The paper presents an analysis and comparison of basic characteristics of axial fans, both analytically and numerically. Such characteristics are: the characteristics of the total pressure, power and total efficiency as a function of the volumetric flow rate. The presented results showed significant quantitative and qualitative differences in the characteristics obtained by two methods. The usefulness of numerical methods in relation to the results of the initial analytical project was confirmed.


2012 ◽  
Vol 2012 (0) ◽  
pp. 147-148
Author(s):  
Takuya AGAWA ◽  
Junichiro FUKUTOMI ◽  
Toru SHIGEMITSU

The shape of a radiator cover is crucial either in determining the pattern of air flow or in increasing the same through the radiator core thereby increasing the thermal efficiency, thus making it a necessity to understand it. Moreover the parts circumjacent to the core namely the upper tank, lower tank, cooling fan, fins, tubes, etc promote the air flow rate. Also it is to note that the air flow rate of discharge gases from radiator core is one of the prime factors in determining the automobile cooling system. Initially factors such as temperature, pressure, air flow rate that affect the performance are obtained in order to derive out the entities of operation. One of the observations that can be made through this paper is that as the volume of the coolant increases, the rate of heat dissipation increases, also parameters like inlet temperature and volume flow rate of coolant, air velocity, temperature drop and drop in pressure of coolant are factors that contribute in radiator performance evidently.


2009 ◽  
Vol 32 (4) ◽  
pp. 766-775 ◽  
Author(s):  
M. Kimber ◽  
K. Suzuki ◽  
N. Kitsunai ◽  
K. Seki ◽  
S.V. Garimella

1997 ◽  
Vol 15 (7) ◽  
pp. 531-540 ◽  
Author(s):  
P.J.C. Anstice ◽  
J.F. Alder

An ASC/T (Cu2+, Cr6+, Ag and triethylenediamine impregnated) Whetlerite activated carbon sample was exposed to a flow rate of 1 l/min, 0.746 mg/l SO2 in 80% RH air at 22°C for up to 510 min. Samples were subsequently challenged with 2 mg/l HCN in an identical diluent gas stream. Increasing SO2 exposure resulted in accelerated HCN and (CN)2 bed penetration. The basic shapes of the breakthrough profiles were however essentially unchanged. This observation is in accordance with numerical analysis of these results using Hinshelwood's adsorption model, which suggested that the adsorption rate constant was not significantly affected by SO2 but rather the pollutant exposure resulted in the number of active centres on the carbon surface being reduced and the effective bed depth of the sample being shortened. This loss in active centres was thought most likely to result from the reduction of Cr6+ to Cr3+.


Sign in / Sign up

Export Citation Format

Share Document