Dynamic Normal Forms and Dynamic Characteristic Polynomial

2008 ◽  
Vol 15 (2) ◽  
Author(s):  
Gudmund Skovbjerg Frandsen ◽  
Piotr Sankowski

We present the first fully dynamic algorithm for computing the characteristic polynomial of a matrix. In the generic symmetric case our algorithm supports rank-one updates in O(n^2 log n) randomized time and queries in constant time, whereas in the general case the algorithm works in O(n^2 k log n) randomized time, where k is the number of invariant factors of the matrix. The algorithm is based on the first dynamic algorithm for computing normal forms of a matrix such as the Frobenius normal form or the tridiagonal symmetric form. The algorithm can be extended to solve the matrix eigenproblem with relative error 2^{-b} in additional O(n log^2 n log b) time. Furthermore, it can be used to dynamically maintain the singular value decomposition (SVD) of a generic matrix. Together with the algorithm the hardness of the problem is studied. For the symmetric case we present an Omega(n^2) lower bound for rank-one updates and an Omega(n) lower bound for element updates.

2021 ◽  
Vol 9 (1) ◽  
pp. 1-18
Author(s):  
Carolyn Reinhart

Abstract The distance matrix 𝒟(G) of a connected graph G is the matrix containing the pairwise distances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi to all other vertices and T(G) is the diagonal matrix of transmissions of the vertices of the graph. The normalized distance Laplacian, 𝒟𝒧(G) = I−T(G)−1/2 𝒟(G)T(G)−1/2, is introduced. This is analogous to the normalized Laplacian matrix, 𝒧(G) = I − D(G)−1/2 A(G)D(G)−1/2, where D(G) is the diagonal matrix of degrees of the vertices of the graph and A(G) is the adjacency matrix. Bounds on the spectral radius of 𝒟 𝒧 and connections with the normalized Laplacian matrix are presented. Twin vertices are used to determine eigenvalues of the normalized distance Laplacian. The distance generalized characteristic polynomial is defined and its properties established. Finally, 𝒟𝒧-cospectrality and lack thereof are determined for all graphs on 10 and fewer vertices, providing evidence that the normalized distance Laplacian has fewer cospectral pairs than other matrices.


2010 ◽  
Vol 47 (03) ◽  
pp. 611-629
Author(s):  
Mark Fackrell ◽  
Qi-Ming He ◽  
Peter Taylor ◽  
Hanqin Zhang

This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.


2015 ◽  
Vol 91 (3) ◽  
pp. 353-367 ◽  
Author(s):  
JING HUANG ◽  
SHUCHAO LI

Given a connected regular graph $G$, let $l(G)$ be its line graph, $s(G)$ its subdivision graph, $r(G)$ the graph obtained from $G$ by adding a new vertex corresponding to each edge of $G$ and joining each new vertex to the end vertices of the corresponding edge and $q(G)$ the graph obtained from $G$ by inserting a new vertex into every edge of $G$ and new edges joining the pairs of new vertices which lie on adjacent edges of $G$. A formula for the normalised Laplacian characteristic polynomial of $l(G)$ (respectively $s(G),r(G)$ and $q(G)$) in terms of the normalised Laplacian characteristic polynomial of $G$ and the number of vertices and edges of $G$ is developed and used to give a sharp lower bound for the degree-Kirchhoff index and a formula for the number of spanning trees of $l(G)$ (respectively $s(G),r(G)$ and $q(G)$).


1984 ◽  
Vol 106 (2) ◽  
pp. 239-249 ◽  
Author(s):  
E. J. Gunter ◽  
R. R. Humphris ◽  
H. Springer

The calculation of the damped eigenvalues of a large multistation gas turbine by the complex matrix transfer procedure may encounter numerical difficulties, even on a large computer due to numerical round-off errors. In this paper, a procedure is presented in which the damped eigenvalues may be rapidly and accurately calculated on a minicomputer with accuracy which rivals that of a mainframe computer using the matrix transfer method. The method presented in this paper is based upon the use of constrained normal modes plus the rigid body modes in order to generate the characteristic polynomial of the system. The constrained undamped modes, using the matrix transfer process with scaling, may be very accurately calculated for a multistation turbine on a minicomputer. In this paper, a five station rotor is evaluated to demonstrate the procedure. A method is presented in which the characteristic polynomial may be automatically generated by Leverrier’s algorithm. The characteristic polynomial may be directly solved or the coefficients of the polynomial may be examined by the Routh criteria to determine stability. The method is accurate and easy to implement on a 16 bit minicomputer.


1976 ◽  
Vol 41 (2) ◽  
pp. 341-362 ◽  
Author(s):  
Harry R. Lewis

Let Kr be the class of all those quantificational formulas whose matrices are conjunctions of binary disjunctions of signed atomic formulas. Decision problems for subclasses of Kr do not invariably coincide with those for the corresponding classes of quantificational formulas with unrestricted matrices; for example, the ∀∃∀ prefix subclass of Kr is solvable, but the full ∀∃∀ class is not ([AaLe],- [KMW]). Moreover, the straightforward encodings of automata which have been used to show the unsolvability of various subclasses of Kr ([Aa], [Bö], [AaLe]) yield but little information about signature subclasses, i.e. subclasses determined by the number and degrees of the predicate letters occurring in a formula. By a new and highly complex construction Theorem 1 establishes the best possible result on classification by signature.Theorem 1. Let C be the class of all formulas in Kr with a single predicate letter, which is dyadic; then C is a reduction class for satisfiability.Thus a signature subclass of Kr is solvable just in case the corresponding class of unrestricted quantificational formulas is solvable, to wit, just in case no predicate letter of degree exceeding one may occur. To obtain a richer classification by signature we consider further restrictions on the matrix. Let Or be the class of formulas in Kr having disjunctive normal forms with only two disjuncts. Theorem 2 sharpens Orevkov's proof of the unsolvability of Or ([Or]; see also [LeGo]).Theorem 2. Let D be the class of formulas in Or with just two predicate letters, both pentadic; then D is a reduction class for satisfiability.


2017 ◽  
Vol 24 (s1) ◽  
pp. 174-181 ◽  
Author(s):  
Zygmunt Paszotta ◽  
Malgorzata Szumilo ◽  
Jakub Szulwic

Abstract This paper intends to point out the possibility of using Internet photogrammetry to construct 3D models from the images obtained by means of UAVs (Unmanned Aerial Vehicles). The solutions may be useful for the inspection of ports as to the content of cargo, transport safety or the assessment of the technical infrastructure of port and quays. The solution can be a complement to measurements made by using laser scanning and traditional surveying methods. In this paper the authors recommend a solution useful for creating 3D models from images acquired by the UAV using non-metric images from digital cameras. The developed algorithms, created and presented software allows to generate 3D models through the Internet in two modes: anaglyph and display in shutter systems. The problem of 3D image generation in photogrammetry is solved by using epipolar images. The appropriate method was presented by Kreiling in 1976. However, it applies to photogrammetric images for which the internal orientation is known. In the case of digital images obtained with non-metric cameras it is required to use another solution based on the fundamental matrix concept, introduced by Luong in 1992. In order to determine the matrix which defines the relationship between left and right digital image it is required to have at least eight homologous points. To determine the solution it is necessary to use the SVD (singular value decomposition). By using the fundamental matrix the epipolar lines are determined, which makes the correct orientation of images making stereo pairs, possible. The appropriate mathematical bases and illustrations are included in the publication.


2018 ◽  
Vol 10 (1) ◽  
pp. 179-184
Author(s):  
A.M. Romaniv

For non-singular matrices with some restrictions, we establish the relationships between Smith normal forms and transforming matrices (a invertible matrices that transform the matrix to its Smith normal form) of two matrices with corresponding matrices of their least common right multiple over a commutative principal ideal domains. Thus, for such a class of matrices, given answer to the well-known task of M. Newman. Moreover, for such matrices, received a new method for finding their least common right multiple which is based on the search for its Smith normal form and transforming matrices.


2019 ◽  
Author(s):  
Arni Sturluson ◽  
Rachel Sousa ◽  
Yujing Zhang ◽  
Melanie T. Huynh ◽  
Caleb Laird ◽  
...  

Metal-organic frameworks (MOFs)-- tunable, nano-porous materials-- are alluring recognition elements for gas sensing. Mimicking human olfaction, an array of cross-sensitive, MOF-based sensors could enable analyte detection in complex, variable gas mixtures containing confounding gas species. Herein, we address the question: given a set of MOF candidates and their adsorption properties, how do we select the optimal subset to compose a sensor array that accurately and robustly predicts the gas composition via monitoring the adsorbed mass in each MOF? We first mathematically formulate the MOF-based sensor array problem under dilute conditions. Instructively, the sensor array can be viewed as a linear map from <i>gas composition space</i> to <i>sensor array response space</i> defined by the matrix <b>H</b> of Henry coefficients of the gases in the MOFs. Characterizing this mapping, the singular value decomposition of <b>H </b>is a useful tool for evaluating MOF subsets for sensor arrays, as it determines the sensitivity of the predicted gas composition to measurement error, quantifies the magnitude of the response to changes in composition, and recovers which direction in gas composition space elicits the largest/smallest response. To illustrate, on the basis of experimental adsorption data, we curate MOFs for a sensor array with the objective of determining the concentration of CO<sub>2</sub> and SO<sub>2</sub> in the gas phase.


2021 ◽  
Vol 71 (6) ◽  
pp. 1375-1400
Author(s):  
Feyzi Başar ◽  
Hadi Roopaei

Abstract Let F denote the factorable matrix and X ∈ {ℓp , c 0, c, ℓ ∞}. In this study, we introduce the domains X(F) of the factorable matrix in the spaces X. Also, we give the bases and determine the alpha-, beta- and gamma-duals of the spaces X(F). We obtain the necessary and sufficient conditions on an infinite matrix belonging to the classes (ℓ p (F), ℓ ∞), (ℓ p (F), f) and (X, Y(F)) of matrix transformations, where Y denotes any given sequence space. Furthermore, we give the necessary and sufficient conditions for factorizing an operator based on the matrix F and derive two factorizations for the Cesàro and Hilbert matrices based on the Gamma matrix. Additionally, we investigate the norm of operators on the domain of the matrix F. Finally, we find the norm of Hilbert operators on some sequence spaces and deal with the lower bound of operators on the domain of the factorable matrix.


Sign in / Sign up

Export Citation Format

Share Document