scholarly journals Internet Photogrammetry for Inspection of Seaports

2017 ◽  
Vol 24 (s1) ◽  
pp. 174-181 ◽  
Author(s):  
Zygmunt Paszotta ◽  
Malgorzata Szumilo ◽  
Jakub Szulwic

Abstract This paper intends to point out the possibility of using Internet photogrammetry to construct 3D models from the images obtained by means of UAVs (Unmanned Aerial Vehicles). The solutions may be useful for the inspection of ports as to the content of cargo, transport safety or the assessment of the technical infrastructure of port and quays. The solution can be a complement to measurements made by using laser scanning and traditional surveying methods. In this paper the authors recommend a solution useful for creating 3D models from images acquired by the UAV using non-metric images from digital cameras. The developed algorithms, created and presented software allows to generate 3D models through the Internet in two modes: anaglyph and display in shutter systems. The problem of 3D image generation in photogrammetry is solved by using epipolar images. The appropriate method was presented by Kreiling in 1976. However, it applies to photogrammetric images for which the internal orientation is known. In the case of digital images obtained with non-metric cameras it is required to use another solution based on the fundamental matrix concept, introduced by Luong in 1992. In order to determine the matrix which defines the relationship between left and right digital image it is required to have at least eight homologous points. To determine the solution it is necessary to use the SVD (singular value decomposition). By using the fundamental matrix the epipolar lines are determined, which makes the correct orientation of images making stereo pairs, possible. The appropriate mathematical bases and illustrations are included in the publication.

Author(s):  
Ryuji Nakada ◽  
Masanori Takigawa ◽  
Tomowo Ohga ◽  
Noritsuna Fujii

Digital oblique aerial camera (hereinafter called “oblique cameras”) is an assembly of medium format digital cameras capable of shooting digital aerial photographs in five directions i.e. nadir view and oblique views (forward and backward, left and right views) simultaneously and it is used for shooting digital aerial photographs efficiently for generating 3D models in a wide area. <br><br> For aerial photogrammetry of public survey in Japan, it is required to use large format cameras, like DMC and UltraCam series, to ensure aerial photogrammetric accuracy. <br><br> Although oblique cameras are intended to generate 3D models, digital aerial photographs in 5 directions taken with them should not be limited to 3D model production but they may also be allowed for digital mapping and photomaps of required public survey accuracy in Japan. <br><br> In order to verify the potency of using oblique cameras for aerial photogrammetry (simultaneous adjustment, digital mapping and photomaps), (1) a viewer was developed to interpret digital aerial photographs taken with oblique cameras, (2) digital aerial photographs were shot with an oblique camera owned by us, a Penta DigiCAM of IGI mbH, and (3) accuracy of 3D measurements was verified.


2007 ◽  
Vol 129 ◽  
pp. 145-150 ◽  
Author(s):  
Tomasz Wejrzanowski ◽  
M. Spychalski ◽  
Roman Pielaszek ◽  
Krzysztof Jan Kurzydlowski

In this study a series of 3D models for curved [100] grain boundaries (GBs) in pure α-iron have been constructed. Each model consisted of a spherical grain, with an initial size of about 9 nm, surrounded by a large single-crystal. Different orientations have been assigned to the grain and the matrix in order to obtain interfaces with misorientation angles in the range of 5-45 degrees in steps of 5 degrees. The molecular dynamics with Embedded Atom Method (EAM) potential have been performed for investigation of the temporal changes in GB migration and grain rotations at temperature of 1000 K. The relationship between GB misorientation and its mobility has been found. It was also discovered that the density of the material decreases with a reduction of GB area. The effect of a triple junction on the interface motion has been also studied by introducing a bi-crystal matrix instead of a singlecrystal one. The results are discussed in terms of grain growth investigations in nanometals.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1577
Author(s):  
Francisco Valverde-Albacete ◽  
Carmen Peláez-Moreno

In this paper, we provide a basic technique for Lattice Computing: an analogue of the Singular Value Decomposition for rectangular matrices over complete idempotent semifields (i-SVD). These algebras are already complete lattices and many of their instances—the complete schedule algebra or completed max-plus semifield, the tropical algebra, and the max-times algebra—are useful in a range of applications, e.g., morphological processing. We further the task of eliciting the relation between i-SVD and the extension of Formal Concept Analysis to complete idempotent semifields (K-FCA) started in a prior work. We find out that for a matrix with entries considered in a complete idempotent semifield, the Galois connection at the heart of K-FCA provides two basis of left- and right-singular vectors to choose from, for reconstructing the matrix. These are join-dense or meet-dense sets of object or attribute concepts of the concept lattice created by the connection, and they are almost surely not pairwise orthogonal. We conclude with an attempt analogue of the fundamental theorem of linear algebra that gathers all results and discuss it in the wider setting of matrix factorization.


Author(s):  
Ryuji Nakada ◽  
Masanori Takigawa ◽  
Tomowo Ohga ◽  
Noritsuna Fujii

Digital oblique aerial camera (hereinafter called “oblique cameras”) is an assembly of medium format digital cameras capable of shooting digital aerial photographs in five directions i.e. nadir view and oblique views (forward and backward, left and right views) simultaneously and it is used for shooting digital aerial photographs efficiently for generating 3D models in a wide area. <br><br> For aerial photogrammetry of public survey in Japan, it is required to use large format cameras, like DMC and UltraCam series, to ensure aerial photogrammetric accuracy. <br><br> Although oblique cameras are intended to generate 3D models, digital aerial photographs in 5 directions taken with them should not be limited to 3D model production but they may also be allowed for digital mapping and photomaps of required public survey accuracy in Japan. <br><br> In order to verify the potency of using oblique cameras for aerial photogrammetry (simultaneous adjustment, digital mapping and photomaps), (1) a viewer was developed to interpret digital aerial photographs taken with oblique cameras, (2) digital aerial photographs were shot with an oblique camera owned by us, a Penta DigiCAM of IGI mbH, and (3) accuracy of 3D measurements was verified.


1992 ◽  
Vol 23 (1) ◽  
pp. 13-26 ◽  
Author(s):  
W. H. Hendershot ◽  
L. Mendes ◽  
H. Lalande ◽  
F. Courchesne ◽  
S. Savoie

In order to determine how water flowpath controls stream chemistry, we studied both soil and stream water during spring snowmelt, 1985. Soil solution concentrations of base cations were relatively constant over time indicating that cation exchange was controlling cation concentrations. Similarly SO4 adsorption-desorption or precipitation-dissolution reactions with the matrix were controlling its concentrations. On the other hand, NO3 appeared to be controlled by uptake by plants or microorganisms or by denitrification since their concentrations in the soil fell abruptly as snowmelt proceeded. Dissolved Al and pH varied vertically in the soil profile and their pattern in the stream indicated clearly the importance of water flowpath on stream chemistry. Although Al increased as pH decreased, the relationship does not appear to be controlled by gibbsite. The best fit of calculated dissolved inorganic Al was obtained using AlOHSO4 with a solubility less than that of pure crystalline jurbanite.


1998 ◽  
Vol 25 (1) ◽  
pp. 81-86 ◽  
Author(s):  
N Hearn ◽  
J Aiello

Experimental work on prismatic concrete specimens was conducted to determine the relationship between mechanical restraint and the rate of corrosion. The current together with the changes in strain of the confining frame were monitored during the accelerated corrosion tests. The effect of mix design and cracking on the corrosion rates was also investigated. The results show that one-dimensional mechanical restraint retards the corrosion process, as indicated by the reduction in the steel loss. Improved quality of the matrix, with and without cracking, reduces the rate of steel loss. In the inferior quality concrete, the effect of cracking on the corrosion rate is minimal.Key words: corrosion, concrete, repair.


Author(s):  
Irzam Sarfraz ◽  
Muhammad Asif ◽  
Joshua D Campbell

Abstract Motivation R Experiment objects such as the SummarizedExperiment or SingleCellExperiment are data containers for storing one or more matrix-like assays along with associated row and column data. These objects have been used to facilitate the storage and analysis of high-throughput genomic data generated from technologies such as single-cell RNA sequencing. One common computational task in many genomics analysis workflows is to perform subsetting of the data matrix before applying down-stream analytical methods. For example, one may need to subset the columns of the assay matrix to exclude poor-quality samples or subset the rows of the matrix to select the most variable features. Traditionally, a second object is created that contains the desired subset of assay from the original object. However, this approach is inefficient as it requires the creation of an additional object containing a copy of the original assay and leads to challenges with data provenance. Results To overcome these challenges, we developed an R package called ExperimentSubset, which is a data container that implements classes for efficient storage and streamlined retrieval of assays that have been subsetted by rows and/or columns. These classes are able to inherently provide data provenance by maintaining the relationship between the subsetted and parent assays. We demonstrate the utility of this package on a single-cell RNA-seq dataset by storing and retrieving subsets at different stages of the analysis while maintaining a lower memory footprint. Overall, the ExperimentSubset is a flexible container for the efficient management of subsets. Availability and implementation ExperimentSubset package is available at Bioconductor: https://bioconductor.org/packages/ExperimentSubset/ and Github: https://github.com/campbio/ExperimentSubset. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Julen Mendieta-Esteban ◽  
Marco Di Stefano ◽  
David Castillo ◽  
Irene Farabella ◽  
Marc A Marti-Renom

Abstract Chromosome conformation capture (3C) technologies measure the interaction frequency between pairs of chromatin regions within the nucleus in a cell or a population of cells. Some of these 3C technologies retrieve interactions involving non-contiguous sets of loci, resulting in sparse interaction matrices. One of such 3C technologies is Promoter Capture Hi-C (pcHi-C) that is tailored to probe only interactions involving gene promoters. As such, pcHi-C provides sparse interaction matrices that are suitable to characterize short- and long-range enhancer–promoter interactions. Here, we introduce a new method to reconstruct the chromatin structural (3D) organization from sparse 3C-based datasets such as pcHi-C. Our method allows for data normalization, detection of significant interactions and reconstruction of the full 3D organization of the genomic region despite of the data sparseness. Specifically, it builds, with as low as the 2–3% of the data from the matrix, reliable 3D models of similar accuracy of those based on dense interaction matrices. Furthermore, the method is sensitive enough to detect cell-type-specific 3D organizational features such as the formation of different networks of active gene communities.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 652-653
Author(s):  
Emily Urban-Wojcik ◽  
Soomi Lee ◽  
Susan Charles ◽  
David Almeida ◽  
Richard Davidson ◽  
...  

Abstract The hippocampus, implicated in learning, memory, and spatial navigation, is one of the few brain structures that demonstrates neurogenesis across the lifespan. Hippocampal volume (HV), then, may be a marker of exposure to and engagement with novel events and environments, which may in turn be related to cognitive functioning. The present study examined the relationship between HV and activity diversity (AD), which characterizes the range and evenness of participation in daily activities. In 52 participants who completed the daily-diary and neuroscience projects of the Midlife in the United States Refresher study, greater levels of AD across an 8-day period were related to greater HV averaged across the left and right hemispheres when adjusting for overall brain volume, total activity time, time between projects, and relevant sociodemographic variables, b=1128mm3, t(43)=2.54, p=.015. These findings may point to a mechanism through which AD has been related to better cognitive and mental health outcomes.


Healthcare ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 936
Author(s):  
Milan Kojić ◽  
Branka Protić Gava ◽  
Milan Bajin ◽  
Marko Vasiljević ◽  
Jasmina Bašić ◽  
...  

Background: The research objective of the study is to determine the differences in the manifestation of the motor status of normally fed preschool test subjects, classified into groups according to foot status. Methods: This is a simple, comparative observational study. Preschool children included in this study have been subjected to anthropometric measurements in order to determine BMI, tests for motor skills assessment (running at 20 m from a high start, standing broad jump, backwards polygon, rectangular seated forward bend, plate tapping, sit-ups for 60 s, and bent arm hang), and a determination of foot status. The total sample was comprised of 202 test subjects who attended a regular sports program, aged 3.9 to 6.5 years of decimal age (M = 141; Age = 5.3 ± 0.74; Height = 117.3 ± 7.1; Weight = 22 ± 3.7; F = 61; Age = 5.1 ± 0.73; Height = 114.9 ± 7.4; Weight = 21.2 ± 3.8), of which 153 (75.7%) were normally fed, 6 (3%) were undernourished, 30 were overweight (14.9%), and 13 were obese (6.4%). Results: In the total sample, 30 (14.9%) subjects had normal arch feet, 90 (44.6%) high arched feet, and 41 (20.3%) flat feet. We found 41 (20.3%) subjects who had different left and right foot statuses within this sample. The data were processed by means of nonparametric tests (the Kruskal–Wallis and Mann–Whitney U tests) at a significance level p ≤ 0.05. Conclusion: The results show that there is a statistically significant difference between groups of subjects with different foot statuses in the manifestation of motor status in most tests, with a significance level of p ≤ 0.01, and in tests of sit-ups for 60 s and the bent arm hang, there is a statistically significant difference, the level of which is p ≤ 0.05. It is only in the inclination test of rectangular seated forward bend that no statistically significant difference was displayed.


Sign in / Sign up

Export Citation Format

Share Document