Implementation Of Modified Smith Predictors Into A Matlab Program

Author(s):  
Radek Matusu ◽  
Roman Prokop
Keyword(s):  
2013 ◽  
Vol 1 (1) ◽  
pp. 42-25
Author(s):  
Nabil N. Swadi

This paper is concerned with the study of the kinematic and kinetic analysis of a slider crank linkage using D'Alembert's principle. The links of the considered mechanism are assumed to be rigid. The analytical solution to observe the motion (displacement, velocity, and acceleration), reactions at each joint, torque required to drive the mechanism and the shaking force have been computed by a computer program written in MATLAB language over one complete revolution of the crank shaft. The results are compared with a finite element simulation carried out by using ANSYS Workbench software and are found to be in good agreement. A graphical method (relative velocity and acceleration method) has been also applied for two phases of the crank shaft (q2 = 10° and 130°). The results obtained from this method (graphical) are compared with those obtained from analytical and numerical method and are found very acceptable. To make the analysis linear the friction force on the joints and sliding interface are neglected. All results, in this work, are obtained when the crank shaft turns at a uniform angular velocity (w2 = 188.5 rad/s) and time dependent gas pressure force on the slider crown.


2013 ◽  
Vol 11 (01) ◽  
pp. 1350015 ◽  
Author(s):  
CHI-KWONG LI ◽  
REBECCA ROBERTS ◽  
XIAOYAN YIN

A general scheme is presented to decompose a d-by-d unitary matrix as the product of two-level unitary matrices with additional structure and prescribed determinants. In particular, the decomposition can be done by using two-level matrices in d - 1 classes, where each class is isomorphic to the group of 2 × 2 unitary matrices. The proposed scheme is easy to apply, and useful in treating problems with the additional structural restrictions. A Matlab program is written to implement the scheme, and the result is used to deduce the fact that every quantum gate acting on n-qubit registers can be expressed as no more than 2n-1(2n-1) fully controlled single-qubit gates chosen from 2n-1 classes, where the quantum gates in each class share the same n - 1 control qubits. Moreover, it is shown that one can easily adjust the proposed decomposition scheme to take advantage of additional structure evolving in the process.


2008 ◽  
Vol 34 (8) ◽  
pp. 861-875 ◽  
Author(s):  
Mikkel Mollerup ◽  
Søren Hansen ◽  
Carsten Petersen ◽  
Jeppe H. Kjaersgaard

2015 ◽  
Vol 1120-1121 ◽  
pp. 670-674
Author(s):  
Abdelmadjid Ait Yala ◽  
Abderrahmanne Akkouche

The aim of this work is to define a general method for the optimization of composite patch repairing. Fracture mechanics theory shows that the stress intensity factor tends towards an asymptotic limit K∞.This limit is given by Rose’s formula and is a function of the thicknesses and mechanical properties of the cracked plate, the composite patch and the adhesive. The proposed approach consists in considering this limit as an objective function that needs to be minimized. In deed lowering this asymptote will reduce the values of the stress intensity factor hence optimize the repair. However to be effective this robust design must satisfy the stiffness ratio criteria. The resolution of this double objective optimization problem with Matlab program allowed us determine the appropriate geometric and mechanical properties that allow the optimum design; that is the selection of the adhesive, the patch and their respective thicknesses.


Author(s):  
S.Yu. Trudnev ◽  

The most widely used single-phase asynchronous motors are described and also substitution and vector dia-grams are reviewed. Theoretical and mathematical descriptions of processes of controlling and enabling asynchronous modes of operation were provided, on the basis of which computer models of a single-phase asynchronous motor in static and dynamic modes was created in the Matlab program. Experiments were per-formed on the real and virtual models, and the data obtained were processed and compared to confirm the adequacy of the developed virtual model.


2002 ◽  
Vol 4 (4) ◽  
pp. 281-295 ◽  
Author(s):  
Jose González-García ◽  
Angel Frías-Ferrer ◽  
Vicente Montiel ◽  
Antonio Aldaz ◽  
Juan A. Conesa

This paper analyses the hydrodynamic behaviour of electrochemical reactors by simulating stimulus–response experiments. The experiments were performed with a simple experimental arrangement to generate data (Residence Time Distribution (RTD) curves) from electrolytic conductivity measurements. The multiparametric model proposed and the Matlab program developed allow the study of electrochemical reactors using three-dimensional electrodes, providing values of characteristic parameters of the materials, such as porosity and compressibility. The study of the reactor also permits modelling of the electrochemical reactions that will be produced inside it.


2018 ◽  
Vol 47 (3) ◽  
pp. 171-177 ◽  
Author(s):  
Satla Zouaoui ◽  
Elajrami Mohamed ◽  
Bendine Kouider

The main objective of the present paper is to design a mathematical model to estimate the behavior of flying robots with four motors (quadcopters) controlled by three algorithms; P depends on the present errors; I on the accumulation of past errors, and D a prediction of future errors (PID controller design) with simple strategy. In this regard, a governing equation of motion based on Newton Euler’s formularies for rigid body dynamics is presented. In order to design the control algorithm some assumptions are made such as the ignorance of the blade flapping, surrounding fluid velocities. This exclusion of parameters makes the model flexible, simple, and allows the control to be more efficiency and easy to designed without the need of expensive computation. The simulation studies are carried out using MATLAB program.


2014 ◽  
Vol 620 ◽  
pp. 104-110
Author(s):  
Wen Min Li ◽  
Cun Yun Pan ◽  
Jin Zhou Chen

This paper modeling the piston ring of a new double-rotor engine based on the analysis, use Matlab program some code and woke out the numerical solution of the model,analyze the change of the gas leakage in the condition of different gas-room volume, different opening area, different spindle rotational speed, which provide strong evidence for improving sealing of the new double-rotor engine and ameliorating sealing design.


Sign in / Sign up

Export Citation Format

Share Document