scholarly journals In Vivo Monitoring of Liver Damage Using Caspase-3 Probe

Theranostics ◽  
2012 ◽  
Vol 2 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Michitaka Ozaki ◽  
Sanae Haga ◽  
Takeaki Ozawa
2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S305-S305
Author(s):  
Philippe E Garnier ◽  
San Won Suh ◽  
Weihai Ying ◽  
Raymond A Swanson

2015 ◽  
Vol 63 (S 01) ◽  
Author(s):  
C. Heim ◽  
S. Müller ◽  
B. Weigmann ◽  
M. Ramsperger-Gleixner ◽  
N. Koch ◽  
...  

2009 ◽  
Vol 38 (2) ◽  
pp. 154-159 ◽  
Author(s):  
Yang-Hee You ◽  
Kuk-Yung Jung ◽  
Yoo-Hyun Lee ◽  
Woo-Jin Jun ◽  
Boo-Yong Lee

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


Talanta ◽  
2021 ◽  
pp. 122610
Author(s):  
Xiang Wang ◽  
Qinghua Wang ◽  
Qingyang Zhang ◽  
Xiaowan Han ◽  
Shengnan Xu ◽  
...  

Cartilage ◽  
2021 ◽  
pp. 194760352110235
Author(s):  
Hongjun Zhang ◽  
Wendi Zheng ◽  
Du Li ◽  
Jia Zheng

Objective miR-146a-5p was found to be significantly upregulated in cartilage tissue of patients with osteoarthritis (OA). NUMB was shown to be involved in the autophagy regulation process of cells. We aimed to learn whether NUMB was involved in the apoptosis or autophagy process of chondrocytes in OA and related with miR-146a-5p. Methods QRT-PCR was used to detect miR-146a-5p level in 22 OA cartilage tissues and 22 controls. The targets of miR-146a-5p were analyzed using software and the luciferase reporter experiment. The apoptosis and autophagy, and related proteins were detected in chondrocytes treated with miR-146a-5p mimic/inhibitor or pcDNA3.1-NUMB/si-NUMB and IL-1β, respectively. In vivo experiment, intra-articular injection of miR-146a-5p antagomir/NC was administered at the knee of OA male mice before and after model construction. Chondrocyte apoptosis and the expression of apoptosis and autophagy-related proteins were also detected. Results miR-146a-5p was highly expressed in knee cartilage tissue of patients with OA, while NUMB was lowly expressed and negatively regulated by miR-146a-5p. Upregulation of miR-146a-5p can promote cell apoptosis and reduce autophagy of human and mouse chondrocytes by modulating the levels of cleaved caspase-3, cleaved PARP, Bax, Beclin 1, ATG5, p62, LC3-I, and LC3-II. Increasing the low level of NUMB reversed the effects of miR-146a-5p on chondrocyte apoptosis and autophagy. Intra-articular injection of miR-146a-5p antagomir can also reverse the effects of miR-146a-5p on the apoptosis and autophagy of knee joint chondrocytes in OA mice. Conclusion Downregulation of miR-146a-5p suppresses the apoptosis and promotes autophagy of chondrocytes by targeting NUMB in vivo and in vitro.


2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. i17-i17
Author(s):  
Puneet Bagga ◽  
Laurie Rich ◽  
Mohammad Haris ◽  
Neil Wilson ◽  
Mitch Schnall ◽  
...  

Abstract Most cancers, including glioblastomas (GBMs), rely extensively on glycolysis to support growth, proliferation, and survival. A hallmark of this elevated glycolysis is overexpression of Lactate dehydrogenase-A (LDHA) protein leading to increased uptake of glucose and overproduction of lactate. Various clinical trials using LDHA as a target for diagnosis and treatment have yielded encouraging results. However, in vivo monitoring of LDHA expression has been challenging due to either requirement of administration of radioactive substrates or specialized hardware. In this presentation, we will demonstrate a new method-quantitative exchanged-label turnover MRS (QELT, or simply qMRS)-that increases the sensitivity of magnetic resonance-based metabolic mapping without the requirement for specialized hardware. qMRS relies on the administration of deuterated (2H-labeled) substrates to track the production of downstream metabolites. Since 2H is invisible on 1H MRS, replacement of 1H with 2H due to metabolic turnover leads to an overall reduction in 1H MRS signal for the corresponding metabolites. We applied our qMRS technique to monitor the rate of lactate production in a preclinical GBM model. Infusion of [6,6’-2H2]glucose led to downstream deuterium labeling of lactate, thereby resulting in a reduction in the 1.33 ppm lactate-CH3 peak on 1H MRS over time. The subtraction of post-administration 1H MR spectra from the pre-infusion spectra aided in the determination of the kinetics of the lactate turnover. We believe that the detection and quantification of lactate production kinetics may provide crucial information regarding tumor LDHA expression non-invasively in GBMs without requiring biopsies. Hence, qMRS is expected to open up new opportunities to probe LDHA expression differences in a variety of gliomas, including GBMs and astrocytomas. This method takes advantage of the universal availability and ease of implementation of 1H MRS on all clinical and preclinical magnetic resonance scanners.


Sign in / Sign up

Export Citation Format

Share Document