In vivo ischemic preconditioning by caspase-3 cleavage of poly(ADP-ribose) polymerase-1

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S305-S305
Author(s):  
Philippe E Garnier ◽  
San Won Suh ◽  
Weihai Ying ◽  
Raymond A Swanson
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


Cartilage ◽  
2021 ◽  
pp. 194760352110235
Author(s):  
Hongjun Zhang ◽  
Wendi Zheng ◽  
Du Li ◽  
Jia Zheng

Objective miR-146a-5p was found to be significantly upregulated in cartilage tissue of patients with osteoarthritis (OA). NUMB was shown to be involved in the autophagy regulation process of cells. We aimed to learn whether NUMB was involved in the apoptosis or autophagy process of chondrocytes in OA and related with miR-146a-5p. Methods QRT-PCR was used to detect miR-146a-5p level in 22 OA cartilage tissues and 22 controls. The targets of miR-146a-5p were analyzed using software and the luciferase reporter experiment. The apoptosis and autophagy, and related proteins were detected in chondrocytes treated with miR-146a-5p mimic/inhibitor or pcDNA3.1-NUMB/si-NUMB and IL-1β, respectively. In vivo experiment, intra-articular injection of miR-146a-5p antagomir/NC was administered at the knee of OA male mice before and after model construction. Chondrocyte apoptosis and the expression of apoptosis and autophagy-related proteins were also detected. Results miR-146a-5p was highly expressed in knee cartilage tissue of patients with OA, while NUMB was lowly expressed and negatively regulated by miR-146a-5p. Upregulation of miR-146a-5p can promote cell apoptosis and reduce autophagy of human and mouse chondrocytes by modulating the levels of cleaved caspase-3, cleaved PARP, Bax, Beclin 1, ATG5, p62, LC3-I, and LC3-II. Increasing the low level of NUMB reversed the effects of miR-146a-5p on chondrocyte apoptosis and autophagy. Intra-articular injection of miR-146a-5p antagomir can also reverse the effects of miR-146a-5p on the apoptosis and autophagy of knee joint chondrocytes in OA mice. Conclusion Downregulation of miR-146a-5p suppresses the apoptosis and promotes autophagy of chondrocytes by targeting NUMB in vivo and in vitro.


Endocrinology ◽  
2003 ◽  
Vol 144 (1) ◽  
pp. 69-74 ◽  
Author(s):  
Yasushi Takai ◽  
Jacqueline Canning ◽  
Gloria I. Perez ◽  
James K. Pru ◽  
Jennifer J. Schlezinger ◽  
...  

APOPTOSIS ◽  
2010 ◽  
Vol 16 (2) ◽  
pp. 198-207 ◽  
Author(s):  
Matteo Scabini ◽  
Fabio Stellari ◽  
Paolo Cappella ◽  
Sara Rizzitano ◽  
Gemma Texido ◽  
...  

1999 ◽  
Vol 19 (9) ◽  
pp. 6076-6084 ◽  
Author(s):  
Graeme C. M. Smith ◽  
Fabrizio d’adda di Fagagna ◽  
Nicholas D. Lakin ◽  
Stephen P. Jackson

ABSTRACT The activation of the cysteine proteases with aspartate specificity, termed caspases, is of fundamental importance for the execution of programmed cell death. These proteases are highly specific in their action and activate or inhibit a variety of key protein molecules in the cell. Here, we study the effect of apoptosis on the integrity of two proteins that have critical roles in DNA damage signalling, cell cycle checkpoint controls, and genome maintenance—the product of the gene defective in ataxia telangiectasia, ATM, and the related protein ATR. We find that ATM but not ATR is specifically cleaved in cells induced to undergo apoptosis by a variety of stimuli. We establish that ATM cleavage in vivo is dependent on caspases, reveal that ATM is an efficient substrate for caspase 3 but not caspase 6 in vitro, and show that the in vitro caspase 3 cleavage pattern mirrors that in cells undergoing apoptosis. Strikingly, apoptotic cleavage of ATM in vivo abrogates its protein kinase activity against p53 but has no apparent effect on the DNA binding properties of ATM. These data suggest that the cleavage of ATM during apoptosis generates a kinase-inactive protein that acts, through its DNA binding ability, in a trans-dominant-negative fashion to prevent DNA repair and DNA damage signalling.


Theranostics ◽  
2012 ◽  
Vol 2 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Michitaka Ozaki ◽  
Sanae Haga ◽  
Takeaki Ozawa

2004 ◽  
Vol 24 (5) ◽  
pp. 556-563 ◽  
Author(s):  
Takatoshi Sorimachi ◽  
Thaddeus S. Nowak

Ischemic preconditioning models have been characterized in brain, heart, and other tissues, and previous pharmacologic studies have suggested an involvement of adenosine and ATP dependent potassium (KATP) channels in such tolerance phenomena. This question was reexamined in a reproducible gerbil model in which the duration of ischemic depolarization defined the severity of preconditioning and test insults. Agents studied were glibenclamide, a blocker of KATP channels; 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptor antagonist; and N6-cyclopentyladenosine (CPA), an A1 agonist. Intraventricular glibenclamide injections aggravated neuron damage after brief priming insults, in parallel with a dose-dependent prolongation of ischemic depolarization. However, the depolarization thresholds for ischemic neuronal injury were identical in vehicle- and glibenclamide-treated animals, and glibenclamide did not affect preconditioning when equivalent insult severity was maintained during priming insults. Neither DPCPX nor CPA had any effect on the onset or duration of depolarization after intraperitoneal injection in this model, and neither drug affected neuron damage. In the case of CPA, it was necessary to maintain temperature for 4 to 6 hours of recirculation to avoid significant confounding hypothermia. These results fail to support a direct involvement of A1 receptors or KATP channels during early stages in the development of ischemic tolerance in vivo, and emphasize the need for robust, well-controlled, and quantitative models in such studies.


2006 ◽  
Vol 290 (4) ◽  
pp. F789-F794 ◽  
Author(s):  
Yasin Tayem ◽  
Tony R. Johnson ◽  
Brian E. Mann ◽  
Colin J. Green ◽  
Roberto Motterlini

Nephrotoxicity is one of the main side effects caused by cisplatin (CP), a widely used antineoplastic agent. Here, we examined the effect of a novel water-soluble carbon monoxide-releasing molecule (CORM-3) on CP-mediated cytotoxicity in renal epithelial cells and explored the potential therapeutic benefits of carbon monoxide in CP-induced nephrotoxicity in vivo. Exposure of LLC-PK1 cells to CP (50 μM) caused significant apoptosis as evidenced by caspase-3 activation and an increased number of floating cells. Treatment with CORM-3 (1–50 μM) resulted in a remarkable and concentration-dependent decrease in CP-induced caspase-3 activity and cell detachment. This effect involved activation of the cGMP pathway as 1H-oxadiazole [4, 3-a] quinoxaline-1-ore (ODQ), a guanylate cyclase inhibitor, completely abolished the protection elicited by CORM-3. Using a rat model of CP-induced renal failure, we found that treatment with CP (7.5 mg/kg) caused a significant elevation in plasma urea (6.6-fold) and creatinine (3.1-fold) levels, which was accompanied by severe morphological changes and marked apoptosis in tubules at the corticomedullary junction. A daily administration of CORM-3 (10 mg/kg ip), starting 1 day before CP treatment and continuing for 3 days thereafter, resulted in amelioration of renal function as shown by reduction of urea and creatinine levels to basal values, a decreased number of apoptotic tubular cells, and an improved histological profile. A negative control (iCORM-3) that is incapable of liberating CO failed to prevent renal dysfunction mediated by CP, indicating that CO is directly involved in renoprotection. Our data demonstrate that CORM-3 can be used as an effective therapeutic adjuvant in the treatment of CP-induced nephrotoxicity.


2018 ◽  
Vol 51 (3) ◽  
pp. 1276-1286 ◽  
Author(s):  
Feng Liang ◽  
Yu-Gang Wang ◽  
Changcheng Wang

Background/Aims: This study aimed at investigating the effects of metformin on the growth and metastasis of esophageal squamous cell carcinoma (ESCC) in vitro and in vivo. Methods: Two human ESCC cell lines EC9706 and Eca109 were selected and challenged with metformin in this study. Western blot assay was performed to detect th level of Bcl-2, Bax and Caspase-3. Scratch wound assay, transwell assay and Millicell invasion assay were used to assay the invasion and migration of EC9706 and Eca109 cells. Nude mice tumor models were used to assay the growth and lung metastasis of ESCC cells after metformin treatment. The plasma glucose level was also assayed. Results: We found that metformin significantly inhibited proliferation and induced apoptosis of both ESCC cell lines in a dose- and time-dependent manner, and the expression of Bcl-2 was down-regulated and Bax and Caspase-3 were up-regulated. Metformin significantly inhibited the invasion and migration of EC9706 and Eca109 cells (p < 0.05). mRNA and protein levels of MMP-2 and MMP-9 decreased significantly upon treatment with metformin of 10mM for 12, 24 and 48h in a time-dependent manner (p < 0.05). In line with in vitro results, in vivo experiments demonstrated that metformin inhibited tumorigenicity, inhibited lung metastasis and down-regulated the expression of MMP-2 and MMP-9. Moreover, we showed that metformin treatment did not cause significant alteration in liver and renal functions and plasma glucose level. Conclusion: Our study for the first time demonstrated the anti-invasive and anti-metastatic effects of metformin on human ESCC cells both in vitro and in vivo, which might be associated with the down-regulation of MMP-2 and MMP-9. As a whole, our results indicate the potential of metformin to be developed as a chemotherapeutic agent for patients with ESCC and might stimulate future studies on this area.


Sign in / Sign up

Export Citation Format

Share Document