scholarly journals Enzymatic studies on the mechanism of action of cefoxitin. Correlation between the affinities of cefoxitin to penicillin-binding proteins and its rates of inhibition of the respective penicillin-sensitive reactions in E. coli.

1978 ◽  
Vol 31 (12) ◽  
pp. 1292-1295 ◽  
Author(s):  
MICHIO MATSUHASHI ◽  
SHIGEO TAMAKI

Since the discovery in 1965 that penicillin inhibits the transpeptidation reaction in peptidoglycan synthesis, a considerable effort has been put into the purification of enzymes that catalyse this reaction. This has resulted in the recognition that bacteria possess multiple forms of these penicillin-sensitive enzymes and has made it difficult to identify the precise target that penicillin inactivates to kill the organism. Recently penicillin-sensitive enzymes have been detected and studied as penicillin-binding proteins on sodium dodecyl sulphate polyacrylamide gels. The availability of this convenient method for identifying penicillin-sensitive enzymes has allowed biochemical and genetical approaches to be used to dissect their roles in the lethal effects of penicillin and other β-lactam antibiotics. Three penicillin-binding proteins (1B, 2 and 3) have been identified as killing targets for penicillin in Escherichia coli , whereas four other binding proteins are not implicated in the mechanism of action of the antibiotic. The complex biological effects that β-lactam antibiotics produce on the growth of E. coli can be explained by their interaction with the three killing targets. Progress in the correlation of penicillin-binding proteins with penicillin-sensitive enzymes and in the development of strains of E. coli that overproduce penicillin-binding proteins is discussed.


2021 ◽  
Author(s):  
Artur Sargun ◽  
Timothy C. Johnstone ◽  
Hui Zhi ◽  
Manuela Raffatellu ◽  
Elizabeth M. Nolan

Siderophore-β-lactam conjugates based on enterobactin and diglucosylated enterobactin enter the periplasm of uropathogenic E. coli CFT073 via the FepA and IroN transporters, and target penicillin-binding proteins.


1999 ◽  
Vol 181 (13) ◽  
pp. 3981-3993 ◽  
Author(s):  
Sylvia A. Denome ◽  
Pamela K. Elf ◽  
Thomas A. Henderson ◽  
David E. Nelson ◽  
Kevin D. Young

ABSTRACT The penicillin binding proteins (PBPs) synthesize and remodel peptidoglycan, the structural component of the bacterial cell wall. Much is known about the biochemistry of these proteins, but little is known about their biological roles. To better understand the contributions these proteins make to the physiology ofEscherichia coli, we constructed 192 mutants from which eight PBP genes were deleted in every possible combination. The genes encoding PBPs 1a, 1b, 4, 5, 6, and 7, AmpC, and AmpH were cloned, and from each gene an internal coding sequence was removed and replaced with a kanamycin resistance cassette flanked by two ressites from plasmid RP4. Deletion of individual genes was accomplished by transferring each interrupted gene onto the chromosome of E. coli via λ phage transduction and selecting for kanamycin-resistant recombinants. Afterwards, the kanamycin resistance cassette was removed from each mutant strain by supplying ParA resolvase in trans, yielding a strain in which a long segment of the original PBP gene was deleted and replaced by an 8-bpres site. These kanamycin-sensitive mutants were used as recipients in further rounds of replacement mutagenesis, resulting in a set of strains lacking from one to seven PBPs. In addition, thedacD gene was deleted from two septuple mutants, creating strains lacking eight genes. The only deletion combinations not produced were those lacking both PBPs 1a and 1b because such a combination is lethal. Surprisingly, all other deletion mutants were viable even though, at the extreme, 8 of the 12 known PBPs had been eliminated. Furthermore, when both PBPs 2 and 3 were inactivated by the β-lactams mecillinam and aztreonam, respectively, several mutants did not lyse but continued to grow as enlarged spheres, so that one mutant synthesized osmotically resistant peptidoglycan when only 2 of 12 PBPs (PBPs 1b and 1c) remained active. These results have important implications for current models of peptidoglycan biosynthesis, for understanding the evolution of the bacterial sacculus, and for interpreting results derived by mutating unknown open reading frames in genome projects. In addition, members of the set of PBP mutants will provide excellent starting points for answering fundamental questions about other aspects of cell wall metabolism.


2008 ◽  
Vol 53 (3) ◽  
pp. 1238-1241 ◽  
Author(s):  
Tetsufumi Koga ◽  
Chika Sugihara ◽  
Masayo Kakuta ◽  
Nobuhisa Masuda ◽  
Eiko Namba ◽  
...  

ABSTRACT Tomopenem (formerly CS-023), a novel 1β-methylcarbapenem, exhibited high affinity for penicillin-binding protein (PBP) 2 in Staphylococcus aureus, PBP 2 in Escherichia coli, and PBPs 2 and 3 in Pseudomonas aeruginosa, which are considered major lethal targets. Morphologically, tomopenem induced spherical forms in E. coli and short filamentation with bulges in P. aeruginosa, which correlated with the drug's PBP profiles. The potential of resistance of these bacteria to tomopenem was comparable to that to imipenem.


2001 ◽  
Vol 183 (10) ◽  
pp. 3055-3064 ◽  
Author(s):  
David E. Nelson ◽  
Kevin D. Young

ABSTRACT Escherichia coli has 12 recognized penicillin binding proteins (PBPs), four of which (PBPs 4, 5, and 6 and DacD) havedd-carboxypeptidase activity. Although the enzymology of the dd-carboxypeptidases has been studied extensively, the in vivo functions of these proteins are poorly understood. To explain why E. coli maintains four independent loci encoding enzymes of considerable sequence identity and comparable in vitro activity, it has been proposed that thedd-carboxypeptidases may substitute for one another in vivo. We tested the validity of this equivalent substitution hypothesis by investigating the effects of these proteins on the aberrant morphology of ΔdacA mutants, which produce no PBP 5. Although cloned PBP 5 complemented the morphological phenotype of a ΔdacA mutant lacking a total of seven PBPs, controlled expression of PBP 4, PBP 6, or DacD did not. Also, a truncated PBP 5 protein lacking its amphipathic C-terminal membrane binding sequence did not reverse the morphological defects and was lethal at low levels of expression, implying that membrane anchoring is essential for the proper functioning of PBP 5. By examining a set of mutants from which multiple PBP genes were deleted, we found that significant morphological aberrations required the absence of at least three different PBPs. The greatest defects were observed in cells lacking, at minimum, PBPs 5 and 6 and one of the endopeptidases (either PBP 4 or PBP 7). The results further differentiate the roles of the low-molecular-weight PBPs, suggest a functional significance for the amphipathic membrane anchor of PBP 5 and, when combined with the recently determined crystal structure of PBP 5, suggest possible mechanisms by which these PBPs may contribute to maintenance of a uniform cell shape in E. coli.


1988 ◽  
Vol 250 (2) ◽  
pp. 313-324 ◽  
Author(s):  
B Joris ◽  
J M Ghuysen ◽  
G Dive ◽  
A Renard ◽  
O Dideberg ◽  
...  

Homology searches and amino acid alignments, using the Streptomyces R61 DD-peptidase/penicillin-binding protein as reference, have been applied to the beta-lactamases of classes A and C, the Oxa-2 beta-lactamase (considered as the first known member of an additional class D), the low-Mr DD-peptidases/penicillin-binding proteins (protein no. 5 of Escherichia coli and Bacillus subtilis) and penicillin-binding domains of the high-Mr penicillin-binding proteins (PBP1A, PBP1B, PBP2 and PBP3 of E. coli). Though the evolutionary distance may vary considerably, all these penicillin-interactive proteins and domains appear to be members of a single superfamily of active-site-serine enzymes distinct from the classical trypsin or subtilisin families. The amino acid alignments reveal several conserved boxes that consist of strict identities or homologous amino acids. The significance of these boxes is highlighted by the known results of X-ray crystallography, chemical derivatization and site-directed-mutagenesis experiments.


Sign in / Sign up

Export Citation Format

Share Document