scholarly journals Cu isotope variations in active hydrothermal chimneys along the ultra-slow spreading Arctic Mid Ocean Ridge

2021 ◽  
Author(s):  
Apolline Samin ◽  
Eoghan Reeves ◽  
Andreas Beinlich ◽  
Jamieson John ◽  
Desiree Roerdink
Geology ◽  
2020 ◽  
Author(s):  
Clément de Sagazan ◽  
Jean-Arthur Olive

The stabilizing effect of surface processes on strain localization, albeit predicted by several decades of geodynamic modeling, remains difficult to document in real tectonic settings. Here we assess whether intense sedimentation can explain the longevity of the normal faults bounding the Andaman Sea spreading center (ASSC). The structure of the ASSC is analogous to a slow-spreading mid-ocean ridge (MOR), with symmetric, evenly spaced axis-facing faults. The average spacing of faults with throws ≥100 m (8.8 km) is however large compared to unsedimented MORs of commensurate spreading rate, suggesting that sedimentation helps focus tectonic strain onto a smaller number of longer-lived faults. We test this idea by simulating a MOR with a specified fraction of magmatic plate separation (M), subjected to a sedimentation rate (s) ranging from 0 to 1 mm/yr. We find that for a given M ≥ 0.7, increasing s increases fault lifespan by ~50%, and the effect plateaus for s > 0.5 mm/yr. Sedimentation prolongs slip on active faults by leveling seafloor relief and raising the threshold for breaking new faults. The effect is more pronounced for faults with a slower throw rate, which is favored by a greater M. These results suggest that sedimentation-enhanced fault lifespan is a viable explanation for the large spacing of ASSC faults if magmatic input is sufficiently robust. By contrast, longer-lived faults that form under low M are not strongly influenced by sedimentation.


Geology ◽  
2020 ◽  
Author(s):  
Qiang Jiang ◽  
Fred Jourdan ◽  
Hugo K.H. Olierook ◽  
Renaud E. Merle ◽  
Joanne M. Whittaker

Large igneous provinces (LIPs) typically form in one short pulse of ~1–5 Ma or several punctuated ~1–5 Ma pulses. Here, our 25 new 40Ar/39Ar plateau ages for the main construct of the Kerguelen LIP—the Cretaceous Southern and Central Kerguelen Plateau, Elan Bank, and Broken Ridge—show continuous volcanic activity from ca. 122 to 90 Ma, a long lifespan of >32 Ma. This suggests that the Kerguelen LIP records the longest, continuous high-magma-flux emplacement interval of any LIP. Distinct from both short-lived and multiple-pulsed LIPs, we propose that Kerguelen is a different type of LIP that formed through long-term interactions between a mantle plume and mid-ocean ridge, which is enabled by multiple ridge jumps, slow spreading, and migration of the ridge. Such processes allow the transport of magma products away from the eruption center and result in long-lived, continuous magmatic activity.


2016 ◽  
Vol 187 ◽  
pp. 156-178 ◽  
Author(s):  
Tamara Baumberger ◽  
Gretchen L. Früh-Green ◽  
Ingunn H. Thorseth ◽  
Marvin D. Lilley ◽  
Cédric Hamelin ◽  
...  

2021 ◽  
Author(s):  
Florent Szitkar ◽  
Laurent Gernigon ◽  
Anna Lim ◽  
Marco Brönner

Abstract We use high-resolution and regional geophysical data to study a bathymetric high near the Mohns/Knipovich ridges junction, in the Norwegian-Greenland Sea. Near-seafloor magnetic data over hydrothermal site Loki’s Castle first support the basaltic nature of the seafloor. We then combine this result with regional magnetic and bathymetric considerations to investigate the crustal architecture in the vicinity of the junction. We show that the spreading asymmetry is insufficient to allow the development of Oceanic Core Complexes. Instead, this atypical off-axis hill is dominantly basaltic and should be interpreted as the first inside corner hogback structure identified along an active mid-ocean ridge system. Our conclusion tempers the definition of Oceanic Core Complex and underlines that bathymetric highs located off axis from slow-spreading centers cannot always be interpreted as such. This intermediate type of spreading paves the way to the introduction of a new class of oceanic structure referred to as Proto-Core Complexes.


2019 ◽  
Vol 60 (6) ◽  
pp. 1135-1162 ◽  
Author(s):  
Fan Yang ◽  
Xiao-Long Huang ◽  
Yi-Gang Xu ◽  
Peng-Li He

Abstract Magmatic processes associated with oceanic crustal accretion at slow-spreading mid-oceanic ridges are less well understood compared with those at fast-spreading ridges. Zoned plagioclase in the basalts might record these magmatic processes as a result of the very slow intra-crystal diffusion of CaAl–NaSi. Plagioclase phenocrysts in plagioclase-phyric basalt from Hole U1433B of International Ocean Discovery Program (IODP) Expedition 349 in the South China Sea show complex zoning patterns (e.g. normal, reverse, oscillatory and patchy). These samples provide a rare opportunity to determine the magma dynamics associated with oceanic crustal accretion at slow-spreading ridges through time. Igneous lithological units in Hole U1433B consist of a series of massive lava flows at the bottom and a thick succession of small pillow lava flows at the top. Most of the plagioclase phenocrysts in the massive lava show core–rim zonation with high-An cores (An ∼85%; in mole fraction; Pl-A) in equilibrium with melts that are more primitive than their host. Some high-An cores of Pl-A phenocrysts contain melt inclusions and are depleted in La, Ce, Y and Ti, but enriched in Sr and Eu; this is interpreted as resulting from dissolution–crystallization processes during reaction of hot melt with pre-existing plagioclase cumulates. In the pillow lavas, most of the plagioclase phenocrysts show normal core–mantle–rim zonation (Pl-B) with An contents decreasing gradually from the core to the mantle to the rim, suggesting extensive magma mixing and differentiation. Reversely zoned plagioclases (Pl-C) are sparsely present throughout the basalts, but mostly occur in the lower part of the drill hole. The cores of euhedral Pl-C phenocrysts are compositionally comparable with the mantles of Pl-B phenocrysts, suggesting that the evolved magma was recharged by a relatively primitive magma. Melt inclusion-bearing Pl-A phenocrysts occur mainly in the massive lava, but rarely in the pillow lava, whereas Pl-B phenocrysts are present dominantly in the pillow lava, which reflects reducing melt–rock interaction and enhanced magma mixing, recharging and differentiation from the bottom to the top of the hole. In addition, the extensive magma mixing and differentiation recorded by Pl-B phenocrysts in the pillow lava require the existence of a melt lens beneath the mid-ocean ridge. Consistently, the plagioclase phenocrysts in the pillow lava mostly lack melt inclusions, corresponding to very weak melt–rock reactions, which indicates that the magma was transported through plagioclase cumulates by channel flow and requires a higher magma supply to the magma conduit. Therefore, the textural and compositional variations of plagioclase phenocrysts in the samples reflect the changes in magma dynamics of the mid-ocean ridge basalt through time with respect to oceanic crustal accretion at slow-spreading ridges. Overall, the oceanic crustal accretion process is sensitive to the magma supply. In the period between two episodes of extension, owing to a low melt supply the primitive melt percolates through and interacts with the mush zone by porous flow, which produces melt inclusion-bearing high-An plagioclase through dissolution–crystallization processes. At the initial stage of a new episode of extension, the melt infiltrates the mush zone and entrains crystal cargoes including melt inclusion-bearing high-An plagioclase. During the major stage of extension, owing to a relatively high melt supply the melt penetrates the mush zone by channel flow and can pool as melt lenses somewhere beneath the dikes; this forms intermediate plagioclases and the reverse zoning of plagioclases by magma mixing, recharging and differentiation in the melt lens. Such magmatic processes might occur repeatedly during the episodic extension that accompanies oceanic crustal accretion at slow-spreading ridges, which enhances the lateral structural heterogeneity of the oceanic crust.


2015 ◽  
Vol 169 ◽  
pp. 152-166 ◽  
Author(s):  
Simon Turner ◽  
Thomas Kokfelt ◽  
Folkmar Hauff ◽  
Karsten Haase ◽  
Craig Lundstrom ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document