A Paleoenvironmental Reconstruction of Elkwater Lake, Alberta

2004 ◽  
Vol 56 (2-3) ◽  
pp. 279-290 ◽  
Author(s):  
Dion J. Wiseman ◽  
Garry L. Running ◽  
Andrea Freeman

AbstractCores retrieved from two slump blocks at the west end of Elkwater Lake, Alberta were used to determine which of two mass wasting events was responsible for impounding the lake and to establish a maximum age of lake formation. A high resolution Digital Elevation Model of the study area was used to estimate the volume of material involved in each mass wasting event, recreate pre-slump topographic conditions, determine the probable extent and elevation of the lake at different periods in time, and evaluate the viability of alternative outlets. Results suggest that the lake formed no more than 9440 BP as a result of impoundment by the eastern slump block. The lake rose to its highest mid-Holocene elevation prior to 7245 BP, establishing an outlet through Feleski Creek 3.5 km northeast of the present shoreline. Lake levels then dropped during the comparatively dry Altithermal, concurrent with a period of rapid sediment influx and the development of the alluvial fan on which the Stampede site is located. As water levels rose during the late Holocene, and with the former outlet cut off by progradation of the alluvial fan, Elkwater Lake established its present outlet though Ross Creek.

2010 ◽  
Vol 124 (3) ◽  
pp. 219
Author(s):  
C. Stuart Houston ◽  
Frank Scott ◽  
Rob B. Tether

Between 1975 and 2002, diminished breeding success of Ospreys was associated with drought and falling lake levels in the western half of our study area near the town of Loon Lake, west-central Saskatchewan. Only 46% of nest attempts were successful in the west compared to 72% in the east, producing 0.88 young per accessible nest in the west and 1.42 in the east. Breeding success was greater in the eastern half, where water levels were stable, in spite of increased human use of the resort lakes there. Our unique long-term Canadian data base results support Ogden's 1977 prediction that Osprey productivity may decrease when water levels drop and fish populations are reduced.


2007 ◽  
Vol 59 (2-3) ◽  
pp. 187-210 ◽  
Author(s):  
C.F. Michael Lewis ◽  
Steve M. Blasco ◽  
Pierre L. Gareau

Abstract In the Great Lakes region, the vertical motion of crustal rebound since the last glaciation has decelerated with time, and is described by exponential decay constrained by observed warping of strandlines of former lakes. A composite isostatic response surface relative to an area southwest of Lake Michigan beyond the limit of the last glacial maximum was prepared for the complete Great Lakes watershed at 10.6 ka BP (12.6 cal ka BP). Uplift of sites computed using values from the response surface facilitated the transformation of a digital elevation model of the present Great Lakes basins to represent the paleogeography of the watershed at selected times. Similarly, the original elevations of radiocarbon-dated geomorphic and stratigraphic indicators of former lake levels were reconstructed and plotted against age to define lake level history. A comparison with the independently computed basin outlet paleo-elevations reveals a phase of severely reduced water levels and hydrologically-closed lakes below overflow outlets between 7.9 and 7.0 ka BP (8.7 and 7.8 cal ka BP) in the Huron-Michigan basin. Severe evaporative draw-down is postulated to result from the early Holocene dry climate when inflows of meltwater from the upstream Agassiz basin began to bypass the upper Great Lakes basin.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Scott A. Kulp ◽  
Benjamin H. Strauss

Abstract Most estimates of global mean sea-level rise this century fall below 2 m. This quantity is comparable to the positive vertical bias of the principle digital elevation model (DEM) used to assess global and national population exposures to extreme coastal water levels, NASA’s SRTM. CoastalDEM is a new DEM utilizing neural networks to reduce SRTM error. Here we show – employing CoastalDEM—that 190 M people (150–250 M, 90% CI) currently occupy global land below projected high tide lines for 2100 under low carbon emissions, up from 110 M today, for a median increase of 80 M. These figures triple SRTM-based values. Under high emissions, CoastalDEM indicates up to 630 M people live on land below projected annual flood levels for 2100, and up to 340 M for mid-century, versus roughly 250 M at present. We estimate one billion people now occupy land less than 10 m above current high tide lines, including 230 M below 1 m.


2010 ◽  
Vol 10 (2) ◽  
pp. 339-352 ◽  
Author(s):  
H. Frey ◽  
W. Haeberli ◽  
A. Linsbauer ◽  
C. Huggel ◽  
F. Paul

Abstract. In the course of glacier retreat, new glacier lakes can develop. As such lakes can be a source of natural hazards, strategies for predicting future glacier lake formation are important for an early planning of safety measures. In this article, a multi-level strategy for the identification of overdeepened parts of the glacier beds and, hence, sites with potential future lake formation, is presented. At the first two of the four levels of this strategy, glacier bed overdeepenings are estimated qualitatively and over large regions based on a digital elevation model (DEM) and digital glacier outlines. On level 3, more detailed and laborious models are applied for modeling the glacier bed topography over smaller regions; and on level 4, special situations must be investigated in-situ with detailed measurements such as geophysical soundings. The approaches of the strategy are validated using historical data from Trift Glacier, where a lake formed over the past decade. Scenarios of future glacier lakes are shown for the two test regions Aletsch and Bernina in the Swiss Alps. In the Bernina region, potential future lake outbursts are modeled, using a GIS-based hydrological flow routing model. As shown by a corresponding test, the ASTER GDEM and the SRTM DEM are both suitable to be used within the proposed strategy. Application of this strategy in other mountain regions of the world is therefore possible as well.


2022 ◽  
Vol 77 (1) ◽  
pp. 21-37
Author(s):  
Alessandro De Pedrini ◽  
Christian Ambrosi ◽  
Cristian Scapozza

Abstract. As a contribution to the knowledge of historical rockslides, this research focuses on the historical reconstruction, field mapping, and simulation of the expansion, through numerical modelling, of the 30 September 1513 Monte Crenone rock avalanche. Earth observation in 2-D and 3-D, as well as direct in situ field mapping, allowed the detachment zone and the perimeter and volume of the accumulation to be determined. Thanks to the reconstruction of the post-event digital elevation model based on historical topographic maps and the numerical modelling with the RAMMS::DEBRISFLOW software, the dynamics and runout of the rock avalanche were calibrated and reconstructed. The reconstruction of the runout model allowed confirmation of the historical data concerning this event, particularly the damming of the valley floor and the lake formation up to an elevation of 390 m a.s.l., which generated an enormous flood by dam breaching on 20 May 1515, known as the “Buzza di Biasca”.


2019 ◽  
Vol 1 ◽  
pp. 1-7
Author(s):  
Klemen Kozmus Trajkovski ◽  
Gašper Štebe ◽  
Dušan Petrovič

<p><strong>Abstract.</strong> Our research is based on a large case study of Unmanned Aerial Vehicle (UAV) surveys, modelling and visualizations of the Doblar accumulation basin. The various approaches for UAV surveying of large, demanding terrain configurations, and the benefits of surveying products used as a basis for other interdisciplinary hydrological and environmental services were researched. The demanding mountainous terrain, the steep slopes and deep and narrow streams required detailed pre-planning of the survey, including the pre-survey terrain overview. The accumulation basin was emptied merely for a short period; thus, the survey was performed in unfavourable weather conditions, which included coldness, snowfall and wind. Point clouds were generated and georeferenced from the 4377 recorded photos. The dense point cloud contained approximately 222 million points in the medium setting and more than a billion in the high setting. A 3D model was built from the data. This became the basis for numerous further analyses and for the presentation using cartographic principles: a digital elevation model with a resolution of 10&amp;thinsp;cm, an orthophoto with a resolution of 10&amp;thinsp;cm, a 3D model draped with orthophoto, contour lines with a 1&amp;thinsp;m interval, topographic profiles, calculations of volumes at different water levels, a flythrough, augmented reality and a video simulation of the water level changes. The model can also serve as a basis for hydraulic and environmental analysis and simulations or used for analyses of the accumulation and deposition of river material compared with previous and future surveys.</p>


2016 ◽  
Vol 86 (2) ◽  
pp. 144-161 ◽  
Author(s):  
Yanxia Liu ◽  
Haijun Huang ◽  
Yali Qi ◽  
Xiao Liu ◽  
Xiguang Yang

AbstractGround-penetrating radar (GPR) reflection profiles were interpreted and combined with sedimentological data to highlight the morpho-evolutionary history of the southwestern sector of the Bohai Sea. The internal structures in GPR images obtained near the Holocene maximum transgression boundary revealed concave-upward and onlap types of transgressive paleotopography. The relationship between historical courses of the Yellow River and the distribution of shell ridges at three periods (6 ka, 2 ka, and recent times) showed that the concave-upward types derived from the marine sediments overlap the fluvial sediments, and the onlap types from the marine sediments cover the coastal lagoon sediments. Based on the above paleogeographical setting, previous sea-level markers were corrected, taking into account uncertainties of their relationship to former water levels. The rates of vertical tectonic displacement, evaluated through comparison of the relative sea level (RSL) data from the GPR images and the Holocene predicted sea-level elevation, markedly affected RSL changes. The fitted RSL curves from the corrected sea-level indicators showed that the accuracy of former sea-level determinations can be improved by comparing with the maximum transgressive position of GPR detection. A topographic digital elevation model (DEM) for 6 ka is reconstructed based on the corrected data.


Coral Reefs ◽  
2021 ◽  
Author(s):  
C. Gabriel David ◽  
Nina Kohl ◽  
Elisa Casella ◽  
Alessio Rovere ◽  
Pablo Ballesteros ◽  
...  

AbstractReconstructing the topography of shallow underwater environments using Structure-from-Motion—Multi View Stereo (SfM-MVS) techniques applied to aerial imagery from Unmanned Aerial Vehicles (UAVs) is challenging, as it involves nonlinear distortions caused by water refraction. This study presents an experiment with aerial photographs collected with a consumer-grade UAV on the shallow-water reef of Fuvahmulah, the Maldives. Under conditions of rising tide, we surveyed the same portion of the reef in ten successive flights. For each flight, we used SfM-MVS to reconstruct the Digital Elevation Model (DEM) of the reef and used the flight at low tide (where the reef is almost entirely dry) to compare the performance of DEM reconstruction under increasing water levels. Our results show that differences with the reference DEM increase with increasing depth, but are substantially larger if no underwater ground control points are taken into account in the processing. Correcting our imagery with algorithms that account for refraction did not improve the overall accuracy of reconstruction. We conclude that reconstructing shallow-water reefs (less than 1 m depth) with consumer-grade UAVs and SfM-MVS is possible, but its precision is limited and strongly correlated with water depth. In our case, the best results are achieved when ground control points were placed underwater and no refraction correction is used.


Author(s):  
Wenjun Zheng ◽  
Haiyun Bi ◽  
Xulong Wang ◽  
Dongli Zhang ◽  
Rong Huang ◽  
...  

Abstract Surface-rupturing strong earthquakes will leave evidence distributed along fault zones. The combination of paleoearthquake trench excavation and faulted microgeomorphic analysis at the same site provides more comprehensive knowledge of paleoearthquakes than either method could accomplish alone. In this article, we report on our use of trench excavation and dating, together with a 5-cm resolution digital elevation model obtained from an unmanned aerial vehicle based on the structure from motion photogrammetry technology, to investigate the timing and size of strong paleoearthquake events in the Dashagou site near the west end of the Haiyuan fault, which ruptured in the 1920 Haiyuan earthquake. The result reveals that at least four strong paleoearthquake events with the same or even higher magnitude (including the 1920 Haiyuan earthquake) have occurred along the west end of the Haiyuan fault since the mid-Holocene. Event IV occurred shortly before 6.0 ka with a horizontal displacement of 4.27±1.50  m and a vertical displacement of 0.70±0.39  m. Event III occurred at approximately 4.65±0.45  ka with a horizontal displacement of 5.45±1.25  m and a vertical displacement of 0.38±0.23  m. Event II occurred at approximately 1.0 ka with a horizontal displacement of 3.86±0.90  m and a vertical displacement of 0.55±0.27  m. The most recent event was the 1920 Haiyuan earthquake, with a horizontal displacement of 2.15±0.82  m and a vertical displacement of 0.26±0.12  m. From the results of these four events, we can certainly conclude that the fault has mainly maintained the strike-slip kinematic pattern over the past 6 ka. These observations highlight the benefits of combining trench excavation and faulted microgeomorphology to gain a more complete understanding of paleoearthquakes.


Sign in / Sign up

Export Citation Format

Share Document