scholarly journals Dynamics of Urban Resilience to Natural Hazards

2020 ◽  
Author(s):  
◽  
Maksims Feofilovs

The statistics of natural disasters, growing population and increasing urbanization rate is indicate a potential increase of disaster risk in urban areas. Research aiming to provide support to disaster risk reduction policies currently is of high importance. The question how to measure urban resilience to natural hazard is an actual problem in research and urban policy planning. A consistent support for assessing urban resilience and evaluating alternative policy strategies for strengthening resilience in required. The current methods applied for assessment of urban resilience are failing to capture the set of important aspects in one measurement. Multidimensionality, short-term and long-term perspective and different likelihoods of disaster occurrence are not captured yet in one single tool. Thus, the Doctoral Thesis aims at creating a novel tool for urban resilience to natural hazard assessment. Three methods ‒ composite indicator, probabilistic simulation, and system dynamics ‒ are applied in a local case study for resilience assessment. Case studies allow understanding the limitations and strengths of the methods. As a result, these methods are integrated into a single tool to overcome limitations of each method. The Doctoral Thesis has been written in English. It consists of an Introduction; 3 Main Chapters; Discussion, Conclusion and Recommendations; 53 figures; 8 tables and 7 publications in appendices; the total number of pages is 180. The Bibliography contains 160 titles. The introduction presents the aim of the Doctoral Thesis, the scientific and practical importance of the developed tool together with the scientific articles published on the topic of the Thesis. The approbated results are presented as a list of publications and presentation made at international scientific conferences. In addition, other publications of the author that are not in line with the Thesis are mentioned. The Doctoral Thesis is based on thematically unified seven scientific articles dedicated to case studies and development of the tool. With help of publications the developed knowledge within this Thesis is transferred to broader scientific community. The publications are published in international scientific journals and are indexed in international scientific databases. The Thesis itself consists of three main chapters. Chapter 1 of the Doctoral Thesis is a literature review on the current topicality of the research field, the terminological variety and epistemological disjunctions of the studied term “resilience” and methods used to measure resilience. Chapter 2 describes each step of methodology of the Doctoral Thesis, presenting the main steps performed in each of the separate studies made within thematic publications. Chapter 3 presents the achieved result. The focus of the chapter is the construct and application of the developed assessment tool of dynamic urban resilience to natural hazards. Finally, conclusions are given at the end of the Thesis resulting from the development and testing of the tool.

2021 ◽  
Author(s):  
Bruce D. Malamud ◽  
Emmah Mwangi ◽  
Joel Gill ◽  
Ekbal Hussain ◽  
Faith Taylor ◽  
...  

<p>Global policy frameworks, such as the Sendai Framework for Disaster Risk Reduction 2015-2030, increasingly advocate for multi-hazard approaches across different spatial scales. However, management approaches on the ground are still informed by siloed approaches based on one single natural hazard (e.g. flood, earthquake, snowstorm). However, locations are rarely subjected to a single natural hazard but rather prone to more than one. These different hazards and their interactions (e.g. one natural hazard triggering or increasing the probability of one or more natural hazards), together with exposure and vulnerability, shape the disaster landscape of a given region and associated disaster impact.  Here, as part of the UK GCRF funded research grant “Tomorrow’s Cities” we first map out the single natural hazardscape for Nairobi using evidence collected through peer-reviewed literature, grey literature, social media and newspapers. We find the following hazard groups and hazard types present in Nairobi: (i) geophysical (earthquakes, volcanic eruptions, landslides), (ii) hydrological (floods and droughts), (iii) shallow earth processes (regional subsidence, ground collapse, soil subsidence, ground heave), (iv) atmospheric hazards (storm, hail, lightning, extreme heat, extreme cold), (v) biophysical (urban fires), and vi) space hazards (geomatic storms, and impact events). The breadth of single natural hazards that can potentially impact Nairobi is much larger than normally considered by individual hazard managers that work in Nairobi. We then use a global hazard matrix to identify possible hazard interactions, focusing on the following interaction mechanisms: (i) hazard triggering secondary hazard, (ii) hazards amplifying the possibility of the secondary hazard occurring.  We identify 67 possible interactions, as well as some of the interaction cascade typologies that are typical for Nairobi (e.g. a storm triggers and increases the probability of a flood which in turn increases the probability of a flood). Our results indicate a breadth of natural hazards and their interactions in Nairobi, and emphasise a need for a multi-hazard approach to disaster risk reduction.</p>


Author(s):  
Maria Papathoma-Köhle ◽  
Dale Dominey-Howes

The second priority of the Sendai Framework for Disaster Risk Reduction 2015–2030 stresses that, to efficiently manage risk posed by natural hazards, disaster risk governance should be strengthened for all phases of the disaster cycle. Disaster management should be based on adequate strategies and plans, guidance, and inter-sector coordination and communication, as well as the participation and inclusion of all relevant stakeholders—including the general public. Natural hazards that occur with limited-notice or no-notice (LNN) challenge these efforts. Different types of natural hazards present different challenges to societies in the Global North and the Global South in terms of detection, monitoring, and early warning (and then response and recovery). For example, some natural hazards occur suddenly with little or no warning (e.g., earthquakes, landslides, tsunamis, snow avalanches, flash floods, etc.) whereas others are slow onset (e.g., drought and desertification). Natural hazards such as hurricanes, volcanic eruptions, and floods may unfold at a pace that affords decision-makers and emergency managers enough time to affect warnings and to undertake preparedness and mitigative activities. Others do not. Detection and monitoring technologies (e.g., seismometers, stream gauges, meteorological forecasting equipment) and early warning systems (e.g., The Australian Tsunami Warning System) have been developed for a number of natural hazard types. However, their reliability and effectiveness vary with the phenomenon and its location. For example, tsunamis generated by submarine landslides occur without notice, generally rendering tsunami-warning systems inadequate. Where warnings are unreliable or mis-timed, there are serious implications for risk governance processes and practices. To assist in the management of LNN events, we suggest emphasis should be given to the preparedness and mitigation phases of the disaster cycle, and in particular, to efforts to engage and educate the public. Risk and vulnerability assessment is also of paramount importance. The identification of especially vulnerable groups, appropriate land use planning, and the introduction and enforcement of building codes and reinforcement regulations, can all help to reduce casualties and damage to the built environment caused by unexpected events. Moreover, emergency plans have to adapt accordingly as they may differ from the evacuation plans for events with a longer lead-time. Risk transfer mechanisms, such as insurance, and public-private partnerships should be strengthened, and redevelopment should consider relocation and reinforcement of new buildings. Finally, participation by relevant stakeholders is a key concept for the management of LNN events as it is also a central component for efficient risk governance. All relevant stakeholders should be identified and included in decisions and their implementation, supported by good communication before, during, and after natural hazard events. The implications for risk governance of a number of natural hazards are presented and illustrated with examples from different countries from the Global North and the Global South.


Author(s):  
Bevaola Kusumasari

Geographically, Indonesia is located in southeast Asia between the Indian and the Pacific Oceans. It is recognized as an active tectonic region because it consists of three major active tectonic plates: the Eurasian plate in the north, the Indo-Australian plate in the south, and the Pacific plate in the east. The southern and eastern parts of the country feature a volcanic arc stretching from the islands of Sumatra, Java, Nusa Tenggara, and Sulawesi, while the remainder of the region comprises old volcanic mountains and lowlands partly dominated by marshes. Territorially, it is located in a tropical climate area, with its two seasons—wet and dry—exhibiting characteristic weather changes, such as with regard to temperature and wind direction, that can be quite extreme. These climatic conditions combine with the region’s relatively diverse surface and rock topographies to provide fertile soil conditions. Conversely, the same conditions can lead to negative outcomes for this densely populated country, in particular, the occurrence of hydrometeorological disasters such as floods, landslides, forest fires, and drought. The 2017 World Risk Report’s ranking of countries’ relative vulnerability and exposure to natural hazards such as earthquakes, storms, floods, droughts, and sea-level rise calculated Indonesia to be the 33rd most at-risk country. Between 1815 and 2018, 23,250 natural hazards occurred here; 302,849 people died or were otherwise lost, 371,059 were injured, and there were 39,514,636 displaced persons, as well as billions of rupiah in losses. The most frequent type of natural hazard has been floods (8,919 instances), followed by cyclones (5,984), and then landslides (4,947). Following these latest disasters and acknowledging that Indonesia is becoming increasingly vulnerable to such natural hazards, the country’s government established a comprehensive disaster management system. Specifically, it instituted an organization capable of and responsible for handling such a wide-reaching and complex situation as a natural hazard. A coordinated national body had first been developed in 1966, but the current discourse concerning proactive disaster risk management at national and local levels has encouraged the central government to adapt this organization toward becoming more accountable to and involving the participation of local communities. Law No. 24/2007 of the Republic of Indonesia Concerning Disaster Management, issued on April 26, 2007, established a new National Disaster Management Agency (BNPB), but it also focusses on community-based disaster risk management pre- and post-disaster. Through the BNPB and by executing legislative reform to implement recommendations from the international disaster response laws, Indonesia has become a global leader in legal preparedness for natural hazards and the reduction of human vulnerability.


Author(s):  
Dewald van Niekerk ◽  
Livhuwani David Nemakonde

The sub-Saharan Africa (SSA) region, along with the rest of the African continent, is prone to a wide variety of natural hazards. Most of these hazards and the associated disasters are relatively silent and insidious, encroaching on life and livelihoods, increasing social, economic, and environmental vulnerability even to moderate events. With the majority of SSA’s disasters being of hydrometeorological origin, climate change through an increase in the frequency and magnitude of extreme weather events is likely to exacerbate the situation. Whereas a number of countries in SSA face significant governance challenges to effectively respond to disasters and manage risk reduction measures, considerable progress has been made since the early 2000s in terms of policies, strategies, and/or institutional mechanisms to advance disaster risk reduction and disaster risk management. As such, most countries in SSA have developed/reviewed policies, strategies, and plans and put in place institutions with dedicated staffs and resources for natural hazard management. However, the lack of financial backing, limited skills, lack of coordination among sectors, weak political leadership, inadequate communication, and shallow natural hazard risk assessment, hinders effective natural hazard management in SSA. The focus here is on the governance of natural hazards in the sub-Saharan Africa region, and an outline of SSA’s natural hazard profile is presented. Climate change is increasing the frequency and magnitude of extreme weather events, thus influencing the occurrence of natural hazards in this region. Also emphasized are good practices in natural hazard governance, and SSA’s success stories are described. Finally, recommendations on governance arrangements for effective implementation of disaster risk reduction initiatives and measures are provided.


Author(s):  
Hamdan Al Ghasyah Dhanhani ◽  
Angus Duncan ◽  
David Chester

The United Arab Emirates (UAE) has more exposure to natural hazards than has been previously recognized. In the last 20 years the UAE has been subject to earthquakes, landslides, floods and tropical storms. This chapter examines the structure and procedures for management of natural disasters in the UAE, in particular issues of governance, accountability and communication within states that are part of a federal system. The study involved interviews with officials at both federal and emirate levels and case studies are presented of the impact of recent natural hazard events. Two emirates were selected for more detailed examination, Fujairah the most hazard prone and a rural emirate and Dubai which is a highly urbanized emirate which has undergone rapid development. There is now increasing awareness of natural hazards in the UAR and progress is being made at regional and federal levels. There needs to be a clear delineation between regional and federal roles and an understanding of the need for effective channels of information to relevant agencies.


2020 ◽  
Author(s):  
Joel C. Gill ◽  
Faith E. Taylor ◽  
Melanie J. Duncan ◽  
Solmaz Mohadjer ◽  
Mirianna Budimir ◽  
...  

Abstract. Reducing disaster risk is critical to securing the ambitions of the Sustainable Development Goals (SDGs), and natural hazard scientists make a key contribution to achieving this aim. Understanding Earth processes and dynamics underpins hazard analysis, which (alongside analysis of other disaster risk drivers) informs the actions required to manage and reduce disaster risk. Here we suggest how natural hazard research scientists can better contribute to the planning and development of sustainable and resilient communities through improved engagement in disaster risk reduction (DRR). Building on existing good practice, this perspective piece aims to provoke discussion in the natural hazard science community about how we can strengthen our engagement in DRR. We set out seven recommendations for enhancing the integration of natural hazard science into DRR: (i) characterise multi-hazard environments, (ii) prioritise effective, positive, long-term partnerships, (iii) understand and listen to your stakeholders, (iv) embed cultural understanding into natural hazards research, (v) ensure improved and equitable access to hazards information, (vi) champion people-centred DRR (leaving no one behind), and (vii) improve links between DRR and sustainable development. We then proceed to synthesise key actions that natural hazards scientists and research funders should consider taking to improve education, training, and research design, and to strengthen institutional, financial and policy actions. We suggest that these actions should help to strengthen the effective application of natural hazards science to reduce disaster risk. By recognising and taking steps to address the issues raised in these recommendations, we propose that the natural hazard science community can more effectively contribute to the inter/transdisciplinary, integrated work required to improve DRR.


2021 ◽  
Author(s):  
Caroline Michellier ◽  
Olivier Dewitte ◽  
François Kervyn

<p>Natural hazards have significant impact on society (people, assets, services, livelihoods and economic growth). Over the past decades, natural hazard disaster risks have increased globally. Due to high population densities, frequently on the rise and combined with high societal vulnerability, natural hazard disasters disproportionately hit regions of the Global south. In addition, these regions are environments where natural hazard and disaster risks are under-researched, and where the population remains under-informed. This is particularly the case of Sub-Saharan Africa: multiple challenges, such as economic development, population growth, environmental issues, and climate change associated to natural disasters risk, are burdened by scientific data scarcity associated with the lack of widely disseminated knowledge to the public. This has a significant negative impact on development.</p><p>To cope such a context, the Royal Museum for Central Africa works in partnership with 10 Central African institutions. In DRC, this partnership involves the Institut Géographique du Congo (Kinshasa and Goma), the Goma Volcano Observatory, the Centre de Recherche en Sciences Naturelles Lwiro, the Université Officielle de Bukavu, the Université de Goma and the Civil Protection (North and South Kivu); in Burundi, with the Université du Burundi; and, in Uganda, with the Mbarara University of Science and Technology.</p><p>The overall long-term objective of the partnership is to contribute to mitigating natural hazards and associated risks in Central Africa. More specifically, it aims to develop knowledge, expertise, awareness and support for local, national and regional initiatives by following three specific objectives: 1/ academic training of PhD and master students, in order to strengthen the local scientific knowledge regarding risk understanding and assessment, in support to local universities, 2/ hazard and disaster data collection through the development of two citizen scientists networks in collaboration with the Civil Protection in charge of disaster risk prevention and management, to promote long term data collection, storage and analysis, 3/ improving awareness and risk preparedness with the use of a natural disaster risk awareness-raising board game in secondary schools and the implementation of two local geohazards information centres, opened for the general public, in collaboration both with disaster risk managers and scientists of the region.</p><p>To summarise, the RMCA’s partnership aims to target a wide range of stakeholders concerned by natural hazard risks and disasters, from academic or research groups to citizens and policy makers, in the concern of enhancing disaster risk communication, and contribute to the development of risk culture. The impact of the tools implemented will be analysed with a view to contributing not only to the implementation of the Sendai Framework for Action, but also to supporting the Sustainable Development Goals.</p>


2016 ◽  
Vol 6 (4) ◽  
pp. 391-402
Author(s):  
Jo Rose ◽  
Janaka Jayawickrama

Purpose The purpose of this paper is to demonstrate the role of local communities in responding to crises and disasters. The paper highlights that most communities have their own mechanisms of dealing with uncertainties and dangers produced by disasters. The paper acknowledges that most disaster response and disaster risk reduction (DDR) organisations advocate to work with local communities and most seek to build the capacity of these communities. Design/methodology/approach The authors draw on a series of case studies gathered together with their experience over the past decade of working with both local communities that have been affected by disasters and international organisations involved in DDR and humanitarian responses. Findings This paper concludes that whilst international institutions continue to make attempts at building the capacity of local communities they need to seek to work collaboratively with local communities. International institutions must ultimately learn from them and build their own capacity for developing context specific and effective DDR strategies and disaster responses. Originality/value This paper offers local case studies that give a rare insight into some of the ways local communities deal with disasters and view international responses to disasters and conflicts. This paper demonstrates the role of local communities in building the capacity of international institutions for DDR.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniel Nohrstedt ◽  
Maurizio Mazzoleni ◽  
Charles F. Parker ◽  
Giuliano Di Baldassarre

AbstractNatural hazard events provide opportunities for policy change to enhance disaster risk reduction (DRR), yet it remains unclear whether these events actually fulfill this transformative role around the world. Here, we investigate relationships between the frequency (number of events) and severity (fatalities, economic losses, and affected people) of natural hazards and DRR policy change in 85 countries over eight years. Our results show that frequency and severity factors are generally unassociated with improved DRR policy when controlling for income-levels, differences in starting policy values, and hazard event types. This is a robust result that accounts for event frequency and different hazard severity indicators, four baseline periods estimating hazard impacts, and multiple policy indicators. Although we show that natural hazards are unassociated with improved DRR policy globally, the study unveils variability in policy progress between countries experiencing similar levels of hazard frequency and severity.


Sign in / Sign up

Export Citation Format

Share Document