scholarly journals APPLICATION OF AMATEUR UAV IN PHOTOGRAMMETRY

AГГ+ ◽  
2019 ◽  
Vol 1 (7) ◽  
Author(s):  
Miroslav Vujasinović ◽  
Jelena Nedić ◽  
Biljana Antunović ◽  
Miodrag Regodić

With the advancement of technology in the last ten years and the cheaper development of microchips, new technologies are available for everyone. In addition to high-performance computers, relatively low-cost drones have been developed. This paper presents the possibility of using unmanned aerial vehicles in geodesy as well as flight planning, flight execution, processing of collected data, describes the basic components of the quadcopter, data collection procedure, processing methods as well as accuracy of the obtained results.

2021 ◽  
Author(s):  
S. Nesmachnow ◽  
C. Paz ◽  
J. Toutouh ◽  
A. Tchernykh

This article presents a multiobjective evolutionary approach for computing flight plans for a fleet of unmanned aerial vehicles to perform exploration and surveillance missions. The static off-line planning subproblem is addressed, which is useful to determine initial flight routes to maximize the explored area and the surveillance of points of interest in the zone. A specific flight planning solution is developed, to be applied in low-cost commercial Bebop 2. The experimental analysis is performed in realistic instances of the surveillance problem. Results indicate that the proposed multiobjective evolutionary algorithm is able to compute accurate flight plans, significantly outperforming a previous evolutionary method applying the linear aggregation approach.


2021 ◽  
Vol 3 ◽  
pp. 65-81
Author(s):  
Izabela Piech ◽  
◽  
Mateusz Kopciara ◽  

Photogrammetry is a rapidly developing field of science, using new technologies such as unmanned aerial vehicles (UAVs), and digital cameras. This field deals with obtaining reliable information about physical objects and their surroundings by means of recording, measuring and interpreting images [Markiewicz et al. 2012]. Currently, unmanned aerial vehicles are used not only for taking amateur or professional commemorative aerial photographs, but they also find much more specialized applications. Among these applications, we can distinguish air pollution inspections (carried out, among others, by municipal police), border inspections, search for missing persons, and many other uses [Nowobilski 2020]. UAV photogrammetry can be understood as a new photogrammetric measurement tool. It opens up various new applications in the field of short-range imaging, combining aerial and ground photogrammetry; and it also introduces low-cost alternatives to classical aerial photogrammetry with crew [Eisenbeiß 2009]. Today, not everyone can afford photogrammetric flight campaigns, which require more time and money. Although UAVs are not used on a large scale in surveying, still, their development, the possibility of using them for surveying works, the accessibility and ease of application, as well as the development of the cameras themselves, convince more and more surveyors to use them more broadly in the performance of geodetic works. Unmanned aerial vehicles are used to perform photogrammetric mission flights, thanks to which photos of the land surface are obtained. This allows for the generation of orthophotos, and even three-dimensional terrain models, enabling further analysis of the studied area. The aim of this study was to present the possibility of using UAVs for the purpose of updating land and buildings records in a specific area. Based on the photos obtained during the photogrammetric mission, an orthophotomap had been generated, which was subsequently used for the modernisation of records and updating the functions of buildings and areas. Then, all the buildings on the land plots were grouped according to their function, status, construction material, number of storeys, and area calculated from the roof surface. 37 land plots were covered by the measurement. 5 selected plots were used for the purpose of this publication.


Author(s):  
K. Nakano ◽  
Y. Tanaka ◽  
H. Suzuki ◽  
K. Hayakawa ◽  
M. Kurodai

Abstract. Unmanned aerial vehicles (UAVs) equipped with image sensors, which have been widely used in various fields such as construction, agriculture, and disaster management, can obtain images at the millimeter to decimeter scale. Useful tools that produce realistic surface models using 3D reconstruction software based on computer vision technologies are generally used to produce datasets from acquired images using UAVs. However, it is difficult to obtain the feature points from surfaces with limited texture, such as new asphalt or concrete, or detect the ground in areas such as forests, which are commonly concealed by vegetation. A promising method to address such issues is the use of UAV-equipped laser scanners. Recently, low and high performance products that use direct georeferencing devices integrated with laser scanners have been available. Moreover, there have been numerous reports regarding the various applications of UAVs equipped with laser scanners; however, these reports only discuss UAVs as measuring devices. Therefore, to understand the functioning of UAVs equipped with laser scanners, we investigated the theoretical accuracy of the survey grade laser scanner unit from the viewpoint of photogrammetry. We evaluated the performance of the VUX-1HA laser scanner equipped on a Skymatix X-LS1 UAV at a construction site. We presented the theoretical values obtained using the observation equations and results of the accuracy aspects of the acquired data in terms of height.


10.37105/sd.5 ◽  
2018 ◽  
Vol 4 ◽  
pp. 22-26
Author(s):  
Michalska Anna ◽  
Karpińska Katarzyna

The main focus of this paper is the capabilities of Unmanned Aerial Vehicles as a military logistic support in conflicts areas. The conducted research addresses the problems of traditional military delivery methods. Next, the problem of using UAVs only for civilian purposes is considered. The paper begins with short elucidation of logistic support and further provides the classification of logistic materials and discusses five categories of military equipment from the logistics point of view. Next, the paper discusses the characteristics of the parameters and properties of the chosen existing UAVs that are used for the delivery of materials. Consequently, a comparison of the UAVs is carried out, and new technologies for logistic transport are presented. This paper is concluded with the claim that it is necessary to modernize the process of logistic support in the military.


2019 ◽  
Vol 91 (1) ◽  
pp. 69-82
Author(s):  
Brandon P. Semel ◽  
Sarah M. Karpanty ◽  
Faramalala Francette Vololonirina ◽  
Ando Nantenaina Rakotonanahary

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 817 ◽  
Author(s):  
Dan Popescu ◽  
Florin Stoican ◽  
Grigore Stamatescu ◽  
Loretta Ichim ◽  
Cristian Dragana

The growing need for food worldwide requires the development of a high-performance, high-productivity, and sustainable agriculture, which implies the introduction of new technologies into monitoring activities related to control and decision-making. In this regard, this paper presents a hierarchical structure based on the collaboration between unmanned aerial vehicles (UAVs) and federated wireless sensor networks (WSNs) for crop monitoring in precision agriculture. The integration of UAVs with intelligent, ground WSNs, and IoT proved to be a robust and efficient solution for data collection, control, analysis, and decisions in such specialized applications. Key advantages lay in online data collection and relaying to a central monitoring point, while effectively managing network load and latency through optimized UAV trajectories and in situ data processing. Two important aspects of the collaboration were considered: designing the UAV trajectories for efficient data collection and implementing effective data processing algorithms (consensus and symbolic aggregate approximation) at the network level for the transmission of the relevant data. The experiments were carried out at a Romanian research institute where different crops and methods are developed. The results demonstrate that the collaborative UAV–WSN–IoT approach increases the performances in both precision agriculture and ecological agriculture.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2467 ◽  
Author(s):  
Hery Mwenegoha ◽  
Terry Moore ◽  
James Pinchin ◽  
Mark Jabbal

The dominant navigation system for low-cost, mass-market Unmanned Aerial Vehicles (UAVs) is based on an Inertial Navigation System (INS) coupled with a Global Navigation Satellite System (GNSS). However, problems tend to arise during periods of GNSS outage where the navigation solution degrades rapidly. Therefore, this paper details a model-based integration approach for fixed wing UAVs, using the Vehicle Dynamics Model (VDM) as the main process model aided by low-cost Micro-Electro-Mechanical Systems (MEMS) inertial sensors and GNSS measurements with moment of inertia calibration using an Unscented Kalman Filter (UKF). Results show that the position error does not exceed 14.5 m in all directions after 140 s of GNSS outage. Roll and pitch errors are bounded to 0.06 degrees and the error in yaw grows slowly to 0.65 degrees after 140 s of GNSS outage. The filter is able to estimate model parameters and even the moment of inertia terms even with significant coupling between them. Pitch and yaw moment coefficient terms present significant cross coupling while roll moment terms seem to be decorrelated from all of the other terms, whilst more dynamic manoeuvres could help to improve the overall observability of the parameters.


2019 ◽  
Vol 40 (7) ◽  
pp. 2483-2492 ◽  
Author(s):  
Andrea Manconi ◽  
Martin Ziegler ◽  
Timon Blöchliger ◽  
Andrea Wolter

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1532 ◽  
Author(s):  
Jamie Wubben ◽  
Francisco Fabra ◽  
Carlos T. Calafate ◽  
Tomasz Krzeszowski ◽  
Johann M. Marquez-Barja ◽  
...  

Over the last few years, several researchers have been developing protocols and applications in order to autonomously land unmanned aerial vehicles (UAVs). However, most of the proposed protocols rely on expensive equipment or do not satisfy the high precision needs of some UAV applications such as package retrieval and delivery or the compact landing of UAV swarms. Therefore, in this work, a solution for high precision landing based on the use of ArUco markers is presented. In the proposed solution, a UAV equipped with a low-cost camera is able to detect ArUco markers sized 56 × 56 cm from an altitude of up to 30 m. Once the marker is detected, the UAV changes its flight behavior in order to land on the exact position where the marker is located. The proposal was evaluated and validated using both the ArduSim simulation platform and real UAV flights. The results show an average offset of only 11 cm from the target position, which vastly improves the landing accuracy compared to the traditional GPS-based landing, which typically deviates from the intended target by 1 to 3 m.


Sign in / Sign up

Export Citation Format

Share Document