scholarly journals Modernization of buildings in a specific area, using photogrammetric methods

2021 ◽  
Vol 3 ◽  
pp. 65-81
Author(s):  
Izabela Piech ◽  
◽  
Mateusz Kopciara ◽  

Photogrammetry is a rapidly developing field of science, using new technologies such as unmanned aerial vehicles (UAVs), and digital cameras. This field deals with obtaining reliable information about physical objects and their surroundings by means of recording, measuring and interpreting images [Markiewicz et al. 2012]. Currently, unmanned aerial vehicles are used not only for taking amateur or professional commemorative aerial photographs, but they also find much more specialized applications. Among these applications, we can distinguish air pollution inspections (carried out, among others, by municipal police), border inspections, search for missing persons, and many other uses [Nowobilski 2020]. UAV photogrammetry can be understood as a new photogrammetric measurement tool. It opens up various new applications in the field of short-range imaging, combining aerial and ground photogrammetry; and it also introduces low-cost alternatives to classical aerial photogrammetry with crew [Eisenbeiß 2009]. Today, not everyone can afford photogrammetric flight campaigns, which require more time and money. Although UAVs are not used on a large scale in surveying, still, their development, the possibility of using them for surveying works, the accessibility and ease of application, as well as the development of the cameras themselves, convince more and more surveyors to use them more broadly in the performance of geodetic works. Unmanned aerial vehicles are used to perform photogrammetric mission flights, thanks to which photos of the land surface are obtained. This allows for the generation of orthophotos, and even three-dimensional terrain models, enabling further analysis of the studied area. The aim of this study was to present the possibility of using UAVs for the purpose of updating land and buildings records in a specific area. Based on the photos obtained during the photogrammetric mission, an orthophotomap had been generated, which was subsequently used for the modernisation of records and updating the functions of buildings and areas. Then, all the buildings on the land plots were grouped according to their function, status, construction material, number of storeys, and area calculated from the roof surface. 37 land plots were covered by the measurement. 5 selected plots were used for the purpose of this publication.

AГГ+ ◽  
2019 ◽  
Vol 1 (7) ◽  
Author(s):  
Miroslav Vujasinović ◽  
Jelena Nedić ◽  
Biljana Antunović ◽  
Miodrag Regodić

With the advancement of technology in the last ten years and the cheaper development of microchips, new technologies are available for everyone. In addition to high-performance computers, relatively low-cost drones have been developed. This paper presents the possibility of using unmanned aerial vehicles in geodesy as well as flight planning, flight execution, processing of collected data, describes the basic components of the quadcopter, data collection procedure, processing methods as well as accuracy of the obtained results.


Drones ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 125
Author(s):  
Timofey Filkin ◽  
Natalia Sliusar ◽  
Marco Ritzkowski ◽  
Marion Huber-Humer

This study justifies the prospect of using aerial imagery from unmanned aerial vehicles (UAVs) for technological monitoring and operational control of municipal solid waste landfills. It presents the results of surveys (aerial imagery) of a number of Russian landfills, which were carried out using low-cost drones equipped with standard RGB cameras. In the processing of aerial photographs, both photogrammetric data processing algorithms (for constructing orthophotoplans of objects and 3D modeling) and procedures for thematic interpretation of photo images were used. Thematic interpretation was carried out based on lists of requirements for the operating landfills (the lists were compiled on the basis of current legislative acts). Thus, this article proposes framework guidelines for the complex technological monitoring of landfills using relatively simple means of remote control. It shows that compliance with most of the basic requirements for landfill operations, which are listed in both Russian and foreign regulation, can be controlled by unmanned aerial imagery. Thus, all of the main technological operations involving waste at landfills (placement, compaction, intermediate isolation) are able to be controlled remotely; as well as compliance with most of the design and planning requirements associated with the presence and serviceability of certain engineering systems and structures (collection systems for leachate and surface wastewater, etc.); and the state of the landfill body. Cases where the compliance with operating standards cannot be monitored remotely are also considered. It discusses the advantages of air imagery in comparison with space imagery (detail of images, operational efficiency), as well as in comparison with ground inspections (speed, personnel safety). It is shown that in many cases, interpreting the obtained aerial photographs for technological monitoring tasks does not require special image processing and can be performed visually. Based on the analysis of the available world experience, as well as the results of the study, it was concluded that unmanned aerial imagery has great potential for solving problems of waste landfill management.


10.37105/sd.5 ◽  
2018 ◽  
Vol 4 ◽  
pp. 22-26
Author(s):  
Michalska Anna ◽  
Karpińska Katarzyna

The main focus of this paper is the capabilities of Unmanned Aerial Vehicles as a military logistic support in conflicts areas. The conducted research addresses the problems of traditional military delivery methods. Next, the problem of using UAVs only for civilian purposes is considered. The paper begins with short elucidation of logistic support and further provides the classification of logistic materials and discusses five categories of military equipment from the logistics point of view. Next, the paper discusses the characteristics of the parameters and properties of the chosen existing UAVs that are used for the delivery of materials. Consequently, a comparison of the UAVs is carried out, and new technologies for logistic transport are presented. This paper is concluded with the claim that it is necessary to modernize the process of logistic support in the military.


2019 ◽  
Vol 91 (1) ◽  
pp. 69-82
Author(s):  
Brandon P. Semel ◽  
Sarah M. Karpanty ◽  
Faramalala Francette Vololonirina ◽  
Ando Nantenaina Rakotonanahary

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2467 ◽  
Author(s):  
Hery Mwenegoha ◽  
Terry Moore ◽  
James Pinchin ◽  
Mark Jabbal

The dominant navigation system for low-cost, mass-market Unmanned Aerial Vehicles (UAVs) is based on an Inertial Navigation System (INS) coupled with a Global Navigation Satellite System (GNSS). However, problems tend to arise during periods of GNSS outage where the navigation solution degrades rapidly. Therefore, this paper details a model-based integration approach for fixed wing UAVs, using the Vehicle Dynamics Model (VDM) as the main process model aided by low-cost Micro-Electro-Mechanical Systems (MEMS) inertial sensors and GNSS measurements with moment of inertia calibration using an Unscented Kalman Filter (UKF). Results show that the position error does not exceed 14.5 m in all directions after 140 s of GNSS outage. Roll and pitch errors are bounded to 0.06 degrees and the error in yaw grows slowly to 0.65 degrees after 140 s of GNSS outage. The filter is able to estimate model parameters and even the moment of inertia terms even with significant coupling between them. Pitch and yaw moment coefficient terms present significant cross coupling while roll moment terms seem to be decorrelated from all of the other terms, whilst more dynamic manoeuvres could help to improve the overall observability of the parameters.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1532 ◽  
Author(s):  
Jamie Wubben ◽  
Francisco Fabra ◽  
Carlos T. Calafate ◽  
Tomasz Krzeszowski ◽  
Johann M. Marquez-Barja ◽  
...  

Over the last few years, several researchers have been developing protocols and applications in order to autonomously land unmanned aerial vehicles (UAVs). However, most of the proposed protocols rely on expensive equipment or do not satisfy the high precision needs of some UAV applications such as package retrieval and delivery or the compact landing of UAV swarms. Therefore, in this work, a solution for high precision landing based on the use of ArUco markers is presented. In the proposed solution, a UAV equipped with a low-cost camera is able to detect ArUco markers sized 56 × 56 cm from an altitude of up to 30 m. Once the marker is detected, the UAV changes its flight behavior in order to land on the exact position where the marker is located. The proposal was evaluated and validated using both the ArduSim simulation platform and real UAV flights. The results show an average offset of only 11 cm from the target position, which vastly improves the landing accuracy compared to the traditional GPS-based landing, which typically deviates from the intended target by 1 to 3 m.


2019 ◽  
Vol 11 (10) ◽  
pp. 1180 ◽  
Author(s):  
Todd M. Buters ◽  
Philip W. Bateman ◽  
Todd Robinson ◽  
David Belton ◽  
Kingsley W. Dixon ◽  
...  

The last decade has seen an exponential increase in the application of unmanned aerial vehicles (UAVs) to ecological monitoring research, though with little standardisation or comparability in methodological approaches and research aims. We reviewed the international peer-reviewed literature in order to explore the potential limitations on the feasibility of UAV-use in the monitoring of ecological restoration, and examined how they might be mitigated to maximise the quality, reliability and comparability of UAV-generated data. We found little evidence of translational research applying UAV-based approaches to ecological restoration, with less than 7% of 2133 published UAV monitoring studies centred around ecological restoration. Of the 48 studies, > 65% had been published in the three years preceding this study. Where studies utilised UAVs for rehabilitation or restoration applications, there was a strong propensity for single-sensor monitoring using commercially available RPAs fitted with the modest-resolution RGB sensors available. There was a strong positive correlation between the use of complex and expensive sensors (e.g., LiDAR, thermal cameras, hyperspectral sensors) and the complexity of chosen image classification techniques (e.g., machine learning), suggesting that cost remains a primary constraint to the wide application of multiple or complex sensors in UAV-based research. We propose that if UAV-acquired data are to represent the future of ecological monitoring, research requires a) consistency in the proven application of different platforms and sensors to the monitoring of target landforms, organisms and ecosystems, underpinned by clearly articulated monitoring goals and outcomes; b) optimization of data analysis techniques and the manner in which data are reported, undertaken in cross-disciplinary partnership with fields such as bioinformatics and machine learning; and c) the development of sound, reasonable and multi-laterally homogenous regulatory and policy framework supporting the application of UAVs to the large-scale and potentially trans-disciplinary ecological applications of the future.


2019 ◽  
Vol 11 (1) ◽  
pp. 65 ◽  
Author(s):  
Marek W. Ewertowski ◽  
Aleksandra M. Tomczyk ◽  
David J. A. Evans ◽  
David H. Roberts ◽  
Wojciech Ewertowski

This study presents the operational framework for rapid, very-high resolution mapping of glacial geomorphology, with the use of budget Unmanned Aerial Vehicles and a structure-from-motion approach. The proposed workflow comprises seven stages: (1) Preparation and selection of the appropriate platform; (2) transport; (3) preliminary on-site activities (including optional ground-control-point collection); (4) pre-flight setup and checks; (5) conducting the mission; (6) data processing; and (7) mapping and change detection. The application of the proposed framework has been illustrated by a mapping case study on the glacial foreland of Hørbyebreen, Svalbard, Norway. A consumer-grade quadcopter (DJI Phantom) was used to collect the data, while images were processed using the structure-from-motion approach. The resultant orthomosaic (1.9 cm ground sampling distance—GSD) and digital elevation model (7.9 cm GSD) were used to map the glacial-related landforms in detail. It demonstrated the applicability of the proposed framework to map and potentially monitor detailed changes in a rapidly evolving proglacial environment, using a low-cost approach. Its coverage of multiple aspects ensures that the proposed framework is universal and can be applied in a broader range of settings.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2144
Author(s):  
Jose Eduardo Fuentes ◽  
Francisco David Moya ◽  
Oscar Danilo Montoya

This study presents a method to estimate the solar energy potential based on 3D data taken from unmanned aerial devices. The solar energy potential on the roof of a building was estimated before the placement of solar panels using photogrammetric data analyzed in a geographic information system, and the predictions were compared with the data recorded after installation. The areas of the roofs were chosen using digital surface models and the hemispherical viewshed algorithm, considering how the solar radiation on the roof surface would be affected by the orientation of the surface with respect to the sun, the shade of trees, surrounding objects, topography, and the atmospheric conditions. The results show that the efficiency percentages of the panels and the data modeled by the proposed method from surface models are very similar to the theoretical efficiency of the panels. Radiation potential can be estimated from photogrammetric data and a 3D model in great detail and at low cost. This method allows the estimation of solar potential as well as the optimization of the location and orientation of solar panels.


Sign in / Sign up

Export Citation Format

Share Document