scholarly journals ANTIBACTERIAL AND DIELECTRIC PROPERTIES OF TEXTILE MATERIALS MODIFIED WITH HERBAL EXTRACT OF Picea omorika AND THE COPPER FERRITE NANOPARTICLES

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dragana Grujić ◽  
Blanka Škipina ◽  
Dragana Cerović ◽  
Ljiljana Topalić-Trivunović ◽  
Aleksandar Savić

In this paper, cotton, polyester and cotton/polyester fabrics were modified by using herbal extract of Picea omorika and copper ferrite nanoparticles and their antibacterial and dielectric properties were investigated. Antibacterial activities of all samples were examined against Escherichia coli and Staphylococcus aureus. Most of the fabrics modified by copper ferrite showed antibacterial activities against Escherichia coli, while the addition of the herbal extract improved their antibacterial protection. Dielectric properties were measured in frequency range from 24 Hz to 75 kHz at room temperature and the results showed that the modification of all three fabrics with copper ferrite caused increase in their electrical conductivity. The obtained results point to the possibility of using investigated fabrics for antibacterial protection as well as for the electromagnetic shielding application.

2020 ◽  
Vol 31 (3) ◽  
pp. 1
Author(s):  
Layla Abdul-Hamid Said

Recently, the biosynthesis of nanoparticles from bacteria have attracted attention, this study has been made for biosynthesize and characterizes silver nanoparticles (AgNPs) from local clinical isolate Pantoea agglomerans. The ability of those particles to inhibit the virulence factors biofilm and hemolysin produced by some local clinical multidrug-resistant human pathogenes including Acinetobactor haemolyticus, Escherichia coli, Serratia marcescens and Staphylococcus aureus were investigated by treating all of the test isolates with sub-MIC(16 mg/ml) AgNPs. The AgNPs produced were characterized using Atomic Force Microscopy (AFM). Pantoea agglomerans were found to have the ability to synthesize AgNPs at room temperature within 24hrs and were spherical in shape as depicted by AFM. The AgNPs produced exhibited a potential antibiofilm and hemolysin inhibition activities against tested pathogens.


2016 ◽  
Vol 120 (13) ◽  
pp. 134304 ◽  
Author(s):  
K. P. Remya ◽  
S. Amirthapandian ◽  
M. Manivel Raja ◽  
C. Viswanathan ◽  
N. Ponpandian

2019 ◽  
Vol 11 (22) ◽  
pp. 2877-2890
Author(s):  
Lianqi Sun ◽  
Shuo Zhang ◽  
Xinyue Hu ◽  
Jie Jin ◽  
Zhuorong Li

Aim: An urgent need for the development of antibiotics with novel structures and unexploited targets. Materials & methods: Racemic chuangxinmycin was obtained via a novel synthesis route. Chiral preparative chromatography was used to separate chuangxinmycin from its epimers, and four stereoisomers were obtained. Fourteen derivatives were synthesized and their antibacterial activities were evaluated against Escherichia coli and Staphylococcus aureus. Results: Synthesized (3 S, 4 R)-chuangxinmycin showed antibacterial activity against S. aureus with minimum inhibitory concentration of 4–8 μg/ml (17.2–34.3 μM), which were consistent with the antibacterial activity of chuangxinmycin obtained by fermentation. The minimum inhibitory concentrations of other stereoscopic chuangxinmycin species and chuangxinmycin derivatives were >128 μg/ml. Conclusion: Results indicate that the antibacterial activity of chuangxinmycin is dependent on the stereoselectivity of structures, and that the electron cloud density and amphipathic properties of chuangxinmycin have little effect on its antibacterial activity.


2011 ◽  
Vol 287-290 ◽  
pp. 1947-1951 ◽  
Author(s):  
Jing Xian Xu ◽  
Ye Ting Lin ◽  
Qiang Lin ◽  
Wen Yuan ◽  
Xue Qiong Yin ◽  
...  

Two Schiff bases of chitosan (CTS) were synthesized from 4-methoxylbenzylaldehyde (CH3O-CTS) and 4-methylbenzylaldehyde(CH3-CTS). The Schiff bases were characterized by FTIR, DSC-TGA, solid13C CP-Mas NMR, and elemental analysis. Antibacterial activities of the Schiff bases against Escherichia coli and Staphylococcus aureus were measured by the optical density method. The antibacterial activity of the Schiff bases is better than that of the original CTS. The IC50of CH3O-CTS and CH3-CTS againstEscherichia coliis respectively 40.3 ppm and 43 ppm, which being 38.5 ppm and 39.5 ppm against Staphylococcus aureus, lower than IC50of chitosan, being 59.5 ppm and 52 ppm againstEscherichia coliand Staphylococcus aureus, respectively.


2014 ◽  
Vol 1052 ◽  
pp. 327-331 ◽  
Author(s):  
Jian Rong Wang ◽  
Ya Li Liu ◽  
Bin Liu ◽  
Yan Ping Wu

A novel method was used to make palygorskite supported nano-silver powder at room temperature. XRD result showed the presence of silver in the final product. TEM investigation revealed that nano-sliver particles of 6-10 nm in diameter were successfully attached on surface of palygorskite fiber. FTIR was also used to clarify the formation mechanism of our method. The antibacterial effect of palygorskite supported nano-silver powder was investigated. Palygorskite supported nano-silver powder had good antibacterial activity on standard Escherichia coli and Staphylococcus aureus.


2018 ◽  
Vol 8 (2) ◽  
pp. 7-12
Author(s):  
Israwati Harahap ◽  
Vivin Paddillah Rahmi ◽  
Nofripa Herlina

Endophytic fungi is a symbiotic microorganism which live inside plant tissues and not harm to their host. Several genera from endophytic fungi known to produce secondary metabolite compounds like antibiotics, anticancer, antifungal, antiviral and antimalarial. This study aimed to investigate antibacterial activity of endophytic fungi from senduduk (Melastoma malabathricum L.) against Escherichia coli and Staphylococcus aureus. Based on the test result, 11 isolates endophytic fungi from senduduk were known to have antibacterial activities. Isolate code 23 have ability to inhibit the growth of E.coli with diameters zone of inhibition is 22 mm and eight isolate endophytic fungi have ability to inhibit the growth of S.aureus (showed by inhibition zone).


2021 ◽  
Vol 68 (3) ◽  
pp. 567-574
Author(s):  
Guo-Xu He ◽  
Ling-Wei Xue

A series of three new hydrazone compounds derived from the condensation reactions of 4-dimethylaminobenzohydrazide with 4-dimethylaminobenzaldehyde, 2-chloro-5-nitrobenzaldehyde and 3-methoxybenzaldehyde, respectively, were prepared. The compounds were characterized by elemental analysis, infrared and UV-vis spectra, HRMS, 1H NMR and 13C NMR spectra, and single crystal X-ray diffraction. Crystals of the compounds are stabilized by hydrogen bonds. The compounds were assayed for antibacterial (Bacillus subtilis, Escherichia coli, Pseudomonas fluorescence and Staphylococcus aureus) and antifungal (Aspergillus niger and Candida albicans) activities by MTT method. The results indicated that compound 2 is an effective antibacterial material.


Sign in / Sign up

Export Citation Format

Share Document