scholarly journals Frequency scheduling algorithm with the allocation of the main and additional frequency bands.

Author(s):  
Maksim Sergeevich Demichev ◽  
Konstantin Eduardovich Gaipov ◽  
Alena Alekseevna Demicheva ◽  
Rinat Faitulovich Faizulin ◽  
Dmitrii Olegovich Malyshev

The subject of this research is the frequency planning algorithm for networks with an arbitrary topology of links over radio channels. The algorithm determines the total number of non-overlapping frequency ranges for the entire network and provides the distribution of each frequency range between communication nodes. The algorithm consists of two stages: at the first stage, there is a search and simultaneous distribution of frequency channels, the so-called main frequency range, as a result, only one frequency range is allocated to each node; at the second stage, additional frequency channels are searched for, which can be used by a separate subset of nodes, thus , some nodes can use more than one frequency range, but several at once. The novelty of this research lies in the developed frequency planning algorithm for wireless communication systems with an arbitrary topology of communications over radio channels. The result of the operation of the algorithm for a wireless communication system is the allocation of radio frequencies for communication nodes from the common frequency band allocated for the wireless communication system, in terms of reuse, eliminating the effect of interference. The result for communication nodes is the allocation of a baseband and an additional frequency band, taking into account the topology of the radio network, which can be used by a separate subset that makes wireless communication systems resistant to narrowband random interference.

2021 ◽  
Author(s):  
Xiaoyan Hu ◽  
Liang Jin ◽  
Yangming Lou ◽  
Zhou Zhong ◽  
Xiaoli Sun

Abstract: The information security and functional safety of wireless communication systems have become the focus of current research. The endogenous security principle based on Dynamic Heterogeneous Redundancy provides a direction for the development of wireless communication security and safety technology. This paper introduces the concept of wireless endogenous security from the following four aspects. First, we sorts out the endogenous security problems faced by the current wireless communication system, and then analyzes the endogenous security and safety attributes of the wireless channel. After that, the endogenous security and safety structure of the wireless communication system is given, and finally the applications of the existing wireless communication endogenous security and safety functions are listed. <br>


2017 ◽  
Vol 6 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Dmytro Krush ◽  
Christoph Cammin ◽  
Ralf Heynicke ◽  
Gerd Scholl ◽  
Bernd Kaercher

Abstract. Custom-fit communication systems are key elements in modern cyber-physical sensor systems. Therefore a wireless communication system (WCS) for sensor/actuator communication has been developed to facilitate energy and environmental monitoring on the shop floor of industrial production sites. Initially, the distinct demands and requirements are described. As the WCS has been designed for new installations as well as for retrofitting already installed facilities, the WCS has to be able to coexist with other wireless communication systems already allocated in the same frequency band. The WCS handles measurement data from both, energy-autarkic sensors and fast line-powered sensors. Mobile users in the field equipped with mobile devices are served by the system, too. A modular hardware concept has been chosen for easy system modification or for the integration of new wireless standards. Finally, measured results for the coexistence capability are presented.


2021 ◽  
Author(s):  
Xiaoyan Hu ◽  
Liang Jin ◽  
Yangming Lou ◽  
Zhou Zhong ◽  
Xiaoli Sun

Abstract: The information security and functional safety of wireless communication systems have become the focus of current research. The endogenous security principle based on Dynamic Heterogeneous Redundancy provides a direction for the development of wireless communication security and safety technology. This paper introduces the concept of wireless endogenous security from the following four aspects. First, we sorts out the endogenous security problems faced by the current wireless communication system, and then analyzes the endogenous security and safety attributes of the wireless channel. After that, the endogenous security and safety structure of the wireless communication system is given, and finally the applications of the existing wireless communication endogenous security and safety functions are listed. <br>


Author(s):  
Guodong Tian ◽  
Rongfang Song

AbstractIntelligent reflecting surface (IRS) has emerged as an innovative and disruptive solution to boost the spectral and energy efficiency and enlarge the coverage of wireless communication systems. However, the existing literature on IRS mainly concentrates on wireless communication systems assisted by single or multiple distributed IRSs, which are not always effective. In view of this issue, this paper considers a special double-IRS-assisted wireless communication system, where IRS1 and IRS2 are deployed near the base station (BS) and the user, respectively, and the transmitted signals reach the user via the cascaded BS-IRS1-IRS2-user channel only. We cooperatively optimize transmit and passive beamforming on the two IRSs based on the particle swarm optimization (PSO) algorithm to maximize the received signal power. Simulation indicates that despite no direct line-of-sight (LoS) path from the BS to the user, an excellent signal-to-noise ratio (SNR) is available at the receiver with the aid of two IRSs, which demonstrates that it is feasible to assist communication by double reflection links composed of two IRSs. Additionally, we unexpectedly find that when the positions of the two IRSs are fixed, by exchanging the positions of the BS and the user, the obtainable SNRs are similar.


2021 ◽  
Vol 42 (4) ◽  
pp. 357-370
Author(s):  
M. A. Salhi ◽  
T. Kleine-Ostmann ◽  
T. Schrader

AbstractIncreasing data rates in wireless communications are accompanied with the need for new unoccupied and unregulated bandwidth in the electromagnetic spectrum. Higher carrier frequencies in the lower THz frequency range might offer the solution for future indoor wireless communication systems with data rates of 100 Gbit/s and beyond that cannot be located elsewhere. In this review, we discuss propagation channel measurements in an extremely broad frequency range from 50 to 325 GHz in selected indoor communication scenarios including kiosk downloading, office room communication, living rooms, and typical industrial environments.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 347 ◽  
Author(s):  
Ke Li ◽  
Tao Dong ◽  
Zhenghuan Xia

This paper presents a multiple-resonance technique that sought to achieve a wide bandwidth for printed wide-slot antennas with fork-shaped stubs. By properly appending an extra fork-shaped stub onto the main fork-shaped stub, the impedance bandwidth was able to be clearly broadened. To validate this technique, two designs where the extra stubs were added at different positions of the main stub were constructed. The measured impedance bandwidths of the proposed antennas reached 148.6% (0.9–6.1 GHz) for S11 < −10 dB, indicating a 17.9% wider bandwidth than that of the normal antenna (0.9–4.3 GHz). Moreover, a stable radiation pattern was observed within the operating frequency range. The proposed antennas were confirmed to be much-improved candidates for applications in various wireless communication systems.


2019 ◽  
Vol 61 (10) ◽  
pp. 763-772
Author(s):  
V. V. Biryukov ◽  
V. L. Vaks ◽  
K. I. Kisilenko ◽  
A. N. Panin ◽  
S. I. Pripolzin ◽  
...  

2020 ◽  
Vol 5 (5) ◽  
pp. 571-575
Author(s):  
Md. Razu Ahmed ◽  
Mohammad Osiur Rahman ◽  
Md. Jiabul Hoque

Smart home is a prime research interest among researchers around the globe due to the fact that it offers ample features to make people’s life effortless and efficient. People can lead their life smartly through the use of smart home technology [17]. There are numerous communication systems in both wired and wireless media exist that are used in smart home technology. However, not a single communication system itself can satisfy all the demands of secure, comfort and intelligent smart home system. Wireless communication is flexible, requires negligible number of instruments, cheap and easy to install but the key concerning issue for wireless communication system in smart home technology is the slow data rate. In contrast, wired communication provides better performance through the provision of higher data rate and uninterrupted connectivity; however, consumers have to pay substantial amount of payment for smart home services [3]. Therefore, it is essential for researchers to analyze both wired and wireless communication system in terms of data rate and area of coverage in order to find out the right communication system for right feature of smart home system. In this paper, authors reviewed and analyzed both wired and wireless communication methods that are commonly used in smart home technology. It can be seen after careful analysis that for majority of the services of smart home system can get better result through the use of wireless communication system even though wired communication system offers better data rate and greater coverage.


2019 ◽  
Vol 12 (3) ◽  
pp. 259-266 ◽  
Author(s):  
T. Azari-Nasab ◽  
CH. Ghobadi ◽  
B. Azarm ◽  
M. Majidzadeh

AbstractA multi-input multi-output (MIMO) antenna is designed and discussed for multi-band applications. The constituent antennas are composed of four L-shaped elements and a ground plane. When placed beside each other to form a MIMO antenna, a T-bar shaped parasitic structure is also embedded between the antennas on the backside of the substrate to increase the inter-element isolation. The triple-band performance of the antenna is observed at 2.15–2.73 GHz, 3.1–3.9 GHz, and 5.04–6 GHz. The isolation level of more than 20 is seen over the operating frequency range. The fabricated prototype of the MIMO antenna size is very compact (20 × 40 mm), printed on the FR4 substrate. Based on simulation and experimental results, the proposed design is useful for WiMAX and WLAN applications.


Sign in / Sign up

Export Citation Format

Share Document