scholarly journals Sequencing and characterization of mitochondrial DNA genome for Brama japonica (Perciformes: Bramidae) with phylogenetic consideration

Author(s):  
Fenfang Chen ◽  
Hongyu Ma ◽  
Chunyan Ma ◽  
Heng Zhang ◽  
Mengdi Zhao ◽  
...  

In the present study, we isolated and characterized the complete mitochondrial genome sequence of Brama japonica by polymerase chain reaction (PCR) amplification and primer-walking sequencing. The complete DNA was 17,009 bp in length and contained a typical set of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and a long putative control region. The gene organization and nucleotide composition of complete mitogenome were identical to those of other Bramidae fishes. In contrast, the 12S rRNA gene contained a big poly C structure which was larger than those from other Bramidae species. Of 37 genes, twenty-eight were encoded by heavy strand, while nine were encoded by light strand. Among the 13 protein-coding genes, twelve employed ATG as start codon, while only COI utilized GTG as start codon. In the control region, the terminal associated sequence (TAS), the central and conserved sequence block (CSB-E and CSB-D) and a variable domain (CSB-1, CSB-2 and CSB-3) were identified, while the typical central conserved CSB-F could not be detected in B. japonica. The putative OL region can fold into a conserved secondary structure and the conserved motif (5’-GCCGG-3’) was found at the base of the stem in tRNACys. The overall nucleotide composition of this genome was 26.43% for A, 16.71% for G, 31.35% for C, and 25.50% for T, with a high A+T content of 51.93%. From the NJ phylogenetic tree, we can find that B. japonica was together with other five Bramidae species formed a monophyletic group among 24 species. This work provided a set of useful data for studying on population genetic diversity and molecular evolution in Bramidae and related fish species.

2016 ◽  
Author(s):  
Fenfang Chen ◽  
Hongyu Ma ◽  
Chunyan Ma ◽  
Heng Zhang ◽  
Mengdi Zhao ◽  
...  

In the present study, we isolated and characterized the complete mitochondrial genome sequence of Brama japonica by polymerase chain reaction (PCR) amplification and primer-walking sequencing. The complete DNA was 17,009 bp in length and contained a typical set of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and a long putative control region. The gene organization and nucleotide composition of complete mitogenome were identical to those of other Bramidae fishes. In contrast, the 12S rRNA gene contained a big poly C structure which was larger than those from other Bramidae species. Of 37 genes, twenty-eight were encoded by heavy strand, while nine were encoded by light strand. Among the 13 protein-coding genes, twelve employed ATG as start codon, while only COI utilized GTG as start codon. In the control region, the terminal associated sequence (TAS), the central and conserved sequence block (CSB-E and CSB-D) and a variable domain (CSB-1, CSB-2 and CSB-3) were identified, while the typical central conserved CSB-F could not be detected in B. japonica. The putative OL region can fold into a conserved secondary structure and the conserved motif (5’-GCCGG-3’) was found at the base of the stem in tRNACys. The overall nucleotide composition of this genome was 26.43% for A, 16.71% for G, 31.35% for C, and 25.50% for T, with a high A+T content of 51.93%. From the NJ phylogenetic tree, we can find that B. japonica was together with other five Bramidae species formed a monophyletic group among 24 species. This work provided a set of useful data for studying on population genetic diversity and molecular evolution in Bramidae and related fish species.


ZooKeys ◽  
2019 ◽  
Vol 879 ◽  
pp. 137-156
Author(s):  
Mingsheng Yang ◽  
Bingyi Hu ◽  
Lin Zhou ◽  
Xiaomeng Liu ◽  
Yuxia Shi ◽  
...  

The complete mitochondrial genome (mitogenome) of Yponomeuta montanatus is sequenced and compared with other published yponomeutoid mitogenomes. The mitogenome is circular, 15,349 bp long, and includes the typical metazoan mitochondrial genes (13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes) and an A + T-rich region. All 13 protein-coding genes use a typical start codon ATN, the one exception being cox1, which uses CGA across yponomeutoid mitogenomes. Comparative analyses further show that the secondary structures of tRNAs are conserved, including loss of the Dihydorouidine (DHU) arm in trnS1 (AGN), but remarkable nucleotide variation has occurred mainly in the DHU arms and pseudouridine (TψC) loops. A + T-rich regions exhibit substantial length variation among yponomeutoid mitogenomes, and conserved sequence blocks are recognized but some of them are not present in all species. Multiple phylogenetic analyses confirm the position of Y. montanatus in Yponomeutoidea. However, the superfamily-level relationships in the Macroheterocera clade in Lepidoptera recovered herein show considerable difference with that recovered in previous mitogenomic studies, raising the necessity of extensive phylogenetic investigation when more mitogenomes become available for this clade.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8780
Author(s):  
Yuxuan Sun ◽  
Yeshu Zhu ◽  
Chen Chen ◽  
Qunshan Zhu ◽  
Qianqian Zhu ◽  
...  

To determine the Dysgonia stuposa mitochondrial genome (mitogenome) structure and to clarify its phylogenetic position, the entire mitogenome of D. stuposa was sequenced and annotated. The D. stuposa mitogenome is 15,721 bp in size and contains 37 genes (protein-coding genes, transfer RNA genes, ribosomal RNA genes) usually found in lepidopteran mitogenomes. The newly sequenced mitogenome contained some common features reported in other Erebidae species, e.g., an A+T biased nucleotide composition and a non-canonical start codon for cox1 (CGA). Like other insect mitogenomes, the D. stuposa mitogenome had a conserved sequence ‘ATACTAA’ in an intergenic spacer between trnS2 and nad1, and a motif ‘ATAGA’ followed by a 20 bp poly-T stretch in the A+T rich region. Phylogenetic analyses supported D. stuposa as part of the Erebidae family and reconfirmed the monophyly of the subfamilies Arctiinae, Catocalinae and Lymantriinae within Erebidae.


ZooKeys ◽  
2020 ◽  
Vol 945 ◽  
pp. 1-16
Author(s):  
Yuan-An Wu ◽  
Jin-Wei Gao ◽  
Xiao-Fei Cheng ◽  
Min Xie ◽  
Xi-Ping Yuan ◽  
...  

Azygia hwangtsiyui (Trematoda, Azygiidae), a neglected parasite of predatory fishes, is little-known in terms of its molecular epidemiology, population ecology and phylogenetic study. In the present study, the complete mitochondrial genome of A. hwangtsiyui was sequenced and characterized: it is a 13,973 bp circular DNA molecule and encodes 36 genes (12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes) as well as two non-coding regions. The A+T content of the A. hwangtsiyui mitogenome is 59.6% and displays a remarkable bias in nucleotide composition with a negative AT skew (–0.437) and a positive GC skew (0.408). Phylogenetic analysis based on concatenated amino acid sequences of twelve protein-coding genes reveals that A. hwangtsiyui is placed in a separate clade, suggesting that it has no close relationship with any other trematode family. This is the first characterization of the A. hwangtsiyui mitogenome, and the first reported mitogenome of the family Azygiidae. These novel datasets of the A. hwangtsiyui mt genome represent a meaningful resource for the development of mitochondrial markers for the identification, diagnostics, taxonomy, homology and phylogenetic relationships of trematodes.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2130
Author(s):  
Luz Lamelas ◽  
Gaël Aleix-Mata ◽  
Michail Rovatsos ◽  
Juan Alberto Marchal ◽  
Teresa Palomeque ◽  
...  

The 65 species of the genus Microtus have unusual sex-related genetic features and a high rate of karyotype variation. However, only nine complete mitogenomes for these species are currently available. We describe the complete mitogenome sequences of three Microtus, which vary in length from 16,295 bp to 16,331 bp, contain 13 protein-coding genes (PCGs), two ribosomal RNA genes, 22 transfer RNA genes and a control region. The length of the 13 PCGs and the coded proteins is the same in all three species, and the start and stop codons are conserved. The non-coding regions include the L-strand origin of replication, with the same sequence of 35 bp, and the control region, which varies between 896 bp and 930 bp in length. The control region includes three domains (Domains I, II and III) with extended termination-associated sequences (ETAS-1 and ETAS-2) in Domain I. Domain II and Domain III include five (CSB-B, C, D, E and F) and three (CSB-1, CSB-2, and CSB-3) conserved sequence blocks, respectively. Phylogenetic reconstructions using the mitochondrial genomes of all the available Microtus species and one representative species from another genus of the Arvicolinae subfamily reproduced the established phylogenetic relationships for all the Arvicolinae genera that were analyzed.


ZooKeys ◽  
2021 ◽  
Vol 1042 ◽  
pp. 51-72
Author(s):  
Ling Zhao ◽  
Jiufeng Wei ◽  
Wanqing Zhao ◽  
Chao Chen ◽  
Xiaoyun Gao ◽  
...  

Pentatoma rufipes (Linnaeus, 1758) is an important agroforestry pest widely distributed in the Palaearctic region. In this study, we sequence and annotate the complete mitochondrial genome of P. rufipes and reconstruct the phylogenetic trees for Pentatomoidea using existing data for eight families published in the National Center for Biotechnology Information database. The mitogenome of P. rufipes is 15,887-bp-long, comprising 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a control region, with an A+T content of 77.7%. The genome structure, gene order, nucleotide composition, and codon usage of the mitogenome of P. rufipes were consistent with those of typical Hemiptera insects. Among the protein-coding genes of Pentatomoidea, the evolutionary rate of ATP8 was the fastest, and COX1 was found to be the most conservative gene in the superfamily. Substitution saturation assessment indicated that neither transition nor transversion substitutions were saturated in the analyzed datasets. Phylogenetic analysis using the Bayesian inference method showed that P. rufipes belonged to Pentatomidae. The node support values based on the dataset concatenated from protein-coding and RNA genes were the highest. Our results enrich the mitochondrial genome database of Pentatomoidea and provide a reference for further studies of phylogenetic systematics.


2021 ◽  
Author(s):  
Longqiang Zhu ◽  
Zhihuang Zhu ◽  
Leiyu Zhu ◽  
Dingquan Wang ◽  
Jianxin Wang ◽  
...  

In this study, the complete mitogenome of Lysmata vittata (Crustacea: Decapoda: Hippolytidae) has been determined. The genome sequence was 22003 base pairs (bp) and it included thirteen protein-coding genes (PCGs), twenty-two transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and three putative control regions (CRs). The nucleotide composition of AT was 71.50%, with a slightly negative AT skewness (-0.04). Usually the standard start codon of the PCGs was ATN, while cox1, nad4L and cox3 began with TTG, TTG and GTG. The canonical termination codon was TAA, while nad5 and nad4 ended with incomplete stop codon T, and cox1 ended with TAG. We compared the order of genes of Decapoda ancestor and found that the positions of the two tRNAs genes ( trnA and trnR ) of the L. vittata were translocated. The phylogenetic tree showed that L. vittata was an independent clade, namely Hippolytidae.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hee-seung Hwang ◽  
Jongwoo Jung ◽  
Juan Antonio Baeza

Abstract Background Stomatopod crustaceans are aggressive marine predators featuring complex compound eyes and powerful raptorial appendages used for “smashing” or “spearing” prey and/or competitors. Among them, parasquilloids (superfamily Parasquilloidea) possess eyes with 2-3 midband rows of hexagonal ommatidia and spearing appendages. Here, we assembled and analyzed the complete mitochondrial genome of the parasquilloid Faughnia haani and explored family- and superfamily-level phylogenetic relationships within the Stomatopoda based on mitochondrial protein coding genes (PCGs). Results The mitochondrial genome of F. haani is 16,089 bp in length and encodes 13 protein coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes, and a control region that is relatively well organized, containing 2 GA-blocks, 4 poly-T stretches, various [TA(A)]n-blocks, and 2 hairpin structures. This organized control region is likely a synapomorphic characteristic in the Stomatopoda. Comparison of the control region among superfamilies shows that parasquilloid species are more similar to gonodactyloids than to squilloids and lysiosquilloids given the presence of various  poly-T stretches between the hairpin structures and [TA(A)]n-blocks. Synteny is identical to that reported for other stomatopods and corresponds to the Pancrustacea ground pattern. A maximum-likelihood phylogenetic tree based on PCGs revealed that Parasquilloidea is sister to Lysiosquilloidea and Gonodactyloidea and not to Squilloidea, contradicting previous phylogenetic studies. Conclusions The novel phylogenetic position of Parasquilloidea revealed by our study indicates that ‘spearing’ raptorial appendages are plesiomorphic and that the ‘smashing’ type is either derived (as reported in previous studies) or apomorphic. Our results raise the possibility that the spearing raptorial claw may have independently evolved twice. The superfamily Parasquilloidea exhibits a closer relationship with other stomatopod superfamilies with a different raptorial claw type and with dissimilar numbers of midband rows of hexagonal ommatidia. Additional studies focusing on the assembly of mitochondrial genomes from species belonging to different genera, families, and superfamilies within the order Stomatopoda are warranted to reach a robust conclusion regarding the evolutionary history of this iconic clade based on mitochondrial PCGs.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vikas Kumar ◽  
Kaomud Tyagi ◽  
Rajasree Chakraborty ◽  
Priya Prasad ◽  
Shantanu Kundu ◽  
...  

AbstractThe complete mitochondrial genome of Lyrognathus crotalus is sequenced, annotated and compared with other spider mitogenomes. It is 13,865 bp long and featured by 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rRNAs), 13 protein-coding genes (PCGs), and a control region (CR). Most of the PCGs used ATN start codon except cox3, and nad4 with TTG. Comparative studies indicated the use of TTG, TTA, TTT, GTG, CTG, CTA as start codons by few PCGs. Most of the tRNAs were truncated and do not fold into the typical cloverleaf structure. Further, the motif (CATATA) was detected in CR of nine species including L. crotalus. The gene arrangement of L. crotalus compared with ancestral arthropod showed the transposition of five tRNAs and one tandem duplication random loss (TDRL) event. Five plesiomophic gene blocks (A-E) were identified, of which, four (A, B, D, E) retained in all taxa except family Salticidae. However, block C was retained in Mygalomorphae and two families of Araneomorphae (Hypochilidae and Pholcidae). Out of 146 derived gene boundaries in all taxa, 15 synapomorphic gene boundaries were identified. TreeREx analysis also revealed the transposition of trnI, which makes three derived boundaries and congruent with the result of the gene boundary mapping. Maximum likelihood and Bayesian inference showed similar topologies and congruent with morphology, and previously reported multi-gene phylogeny. However, the Gene-Order based phylogeny showed sister relationship of L. crotalus with two Araneomorphae family members (Hypochilidae and Pholcidae) and other Mygalomorphae species.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1185
Author(s):  
Wenqian Wang ◽  
Huan Zhang ◽  
Jérôme Constant ◽  
Charles R. Bartlett ◽  
Daozheng Qin

The complete mitogenomes of nine fulgorid species were sequenced and annotated to explore their mitogenome diversity and the phylogenetics of Fulgoridae. All species are from China and belong to five genera: Dichoptera Spinola, 1839 (Dichoptera sp.); Neoalcathous Wang and Huang, 1989 (Neoalcathous huangshanana Wang and Huang, 1989); Limois Stål, 1863 (Limois sp.); Penthicodes Blanchard, 1840 (Penthicodes atomaria (Weber, 1801), Penthicodes caja (Walker, 1851), Penthicodes variegata (Guérin-Méneville, 1829)); Pyrops Spinola, 1839 (Pyrops clavatus (Westwood, 1839), Pyrops lathburii (Kirby, 1818), Pyrops spinolae (Westwood, 1842)). The nine mitogenomes were 15,803 to 16,510 bp in length with 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and a control region (A + T-rich region). Combined with previously reported fulgorid mitogenomes, all PCGs initiate with either the standard start codon of ATN or the nonstandard GTG. The TAA codon was used for termination more often than the TAG codon and the incomplete T codon. The nad1 and nad4 genes varied in length within the same genus. A high percentage of F residues were found in the nad4 and nad5 genes of all fulgorid mitogenomes. The DHU stem of trnV was absent in the mitogenomes of all fulgorids sequenced except Dichoptera sp. Moreover, in most fulgorid mitogenomes, the trnL2, trnR, and trnT genes had an unpaired base in the aminoacyl stem and trnS1 had an unpaired base in the anticodon stem. The similar tandem repeat regions of the control region were found in the same genus. Phylogenetic analyses were conducted based on 13 PCGs and two rRNA genes from 53 species of Fulgoroidea and seven outgroups. The Bayesian inference and maximum likelihood trees had a similar topological structure. The major results show that Fulgoroidea was divided into two groups: Delphacidae and ((Achilidae + (Lophopidae + (Issidae + (Flatidae + Ricaniidae)))) + Fulgoridae). Furthermore, the monophyly of Fulgoridae was robustly supported, and Aphaeninae was divided into Aphaenini and Pyropsini, which includes Neoalcathous, Pyrops, Datua Schmidt, 1911, and Saiva Distant, 1906. The genus Limois is recovered in the Aphaeninae, and the Limoisini needs further confirmation; Dichoptera sp. was the earliest branch in the Fulgoridae.


Sign in / Sign up

Export Citation Format

Share Document