scholarly journals Determining virus-host interactions and glycerol metabolism profiles in geographically diverse solar salterns with metagenomics

Author(s):  
Abraham G Moller ◽  
Chun Liang

Solar salterns are excellent model ecosystems for studying virus-microbial interactions because of their low microbial diversity, environmental stability, and high viral density. By using the power of CRISPR spacers to link viruses to their prokaryotic hosts, we explored virus-host interactions in geographically diverse salterns and related them to carbon cycling. Using taxonomic profiling, we identified hosts such as archaeal Haloquadratum, Halorubrum, and Haloarcula and bacterial Salinibacter, and we found that community composition related to not only salinity but also local environmental dynamics. Characterizing glycerol metabolism genes in these metagenomes suggested Halorubrum and Haloquadratum possess most dihydroxyacetone kinase genes while Salinibacter possesses most glycerol-3-phosphate dehydrogenase genes. We identified CRISPR spacers in the metagenomes with two different methods and found more spacers in the IC21 and C34 salterns compared with the SS19, SS33, and SS37 salterns, suggesting fewer types of CRISPR spacers in the Haloquadratum-majority salterns. After CRISPR detection, spacers were aligned against haloviral genomes to map virus to host. While most alignments linked viruses to Haloquadratum walsbyi, there were groups of interactions with the low abundance taxa Haloarcula and Haloferax. Further examination of the dinucleotide and trinucleotide usage differences between paired viruses and their hosts confirmed viruses and hosts had similar nucleotide usage signatures. Detection of cas genes in the salterns supported the possibility of CRISPR activity. Taken together, our studies suggest similar virus-host interactions exist in different solar salterns and that the glycerol metabolism gene dihydroxyacetone kinase is associated with Haloquadratum and Halorubrum.

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2844 ◽  
Author(s):  
Abraham G. Moller ◽  
Chun Liang

Solar salterns are excellent model ecosystems for studying virus-microbial interactions because of their low microbial diversity, environmental stability, and high viral density. By using the power of CRISPR spacers to link viruses to their prokaryotic hosts, we explored virus-host interactions in geographically diverse salterns. Using taxonomic profiling, we identified hosts such as archaeal Haloquadratum, Halorubrum, and Haloarcula and bacterial Salinibacter, and we found that community composition related to not only salinity but also local environmental dynamics. Characterizing glycerol metabolism genes in these metagenomes suggested Halorubrum and Haloquadratum possess most dihydroxyacetone kinase genes while Salinibacter possesses most glycerol-3-phosphate dehydrogenase genes. Using two different methods, we detected fewer CRISPR spacers in Haloquadratum-dominated compared with Halobacteriaceae-dominated saltern metagenomes. After CRISPR detection, spacers were aligned against haloviral genomes to map virus to host. While most alignments for each saltern metagenome linked viruses to Haloquadratum walsbyi, there were also alignments indicating interactions with the low abundance taxa Haloarcula and Haloferax. Further examination of the dinucleotide and trinucleotide usage differences between paired viruses and their hosts confirmed viruses and hosts had similar nucleotide usage signatures. Detection of cas genes in the salterns supported the possibility of CRISPR activity. Taken together, our studies suggest similar virus-host interactions exist in different solar salterns and that the glycerol metabolism gene dihydroxyacetone kinase is associated with Haloquadratum and Halorubrum.


2016 ◽  
Author(s):  
Abraham G Moller ◽  
Chun Liang

Solar salterns are excellent model ecosystems for studying virus-microbial interactions because of their low microbial diversity, environmental stability, and high viral density. By using the power of CRISPR spacers to link viruses to their prokaryotic hosts, we explored virus-host interactions in geographically diverse salterns and related them to carbon cycling. Using taxonomic profiling, we identified hosts such as archaeal Haloquadratum, Halorubrum, and Haloarcula and bacterial Salinibacter, and we found that community composition related to not only salinity but also local environmental dynamics. Characterizing glycerol metabolism genes in these metagenomes suggested Halorubrum and Haloquadratum possess most dihydroxyacetone kinase genes while Salinibacter possesses most glycerol-3-phosphate dehydrogenase genes. We identified CRISPR spacers in the metagenomes with two different methods and found more spacers in the IC21 and C34 salterns compared with the SS19, SS33, and SS37 salterns, suggesting fewer types of CRISPR spacers in the Haloquadratum-majority salterns. After CRISPR detection, spacers were aligned against haloviral genomes to map virus to host. While most alignments linked viruses to Haloquadratum walsbyi, there were groups of interactions with the low abundance taxa Haloarcula and Haloferax. Further examination of the dinucleotide and trinucleotide usage differences between paired viruses and their hosts confirmed viruses and hosts had similar nucleotide usage signatures. Detection of cas genes in the salterns supported the possibility of CRISPR activity. Taken together, our studies suggest similar virus-host interactions exist in different solar salterns and that the glycerol metabolism gene dihydroxyacetone kinase is associated with Haloquadratum and Halorubrum.


2016 ◽  
Author(s):  
Abraham G Moller ◽  
Chun Liang

Solar salterns are excellent model ecosystems for studying virus-microbial interactions because of their low microbial diversity, environmental stability, and high viral density. By using the power of CRISPR spacers to link viruses to their prokaryotic hosts, we explored virus-host interactions in geographically diverse salterns and related them to carbon cycling. Using taxonomic profiling, we identified hosts such as archaeal Haloquadratum, Halorubrum, and Haloarcula and bacterial Salinibacter, and we found that community composition related to not only salinity but also local environmental dynamics. Characterizing glycerol metabolism genes in these metagenomes suggested most dihydroxyacetone kinase genes affiliate to Halorubrum and Haloquadratum while most glycerol-3-phosphate dehydrogenase genes affiliate to Salinibacter. We identified CRISPR spacers in the metagenomes with two different methods and found more spacers in the Halobacteriaceae-dominated IC21 and C34 salterns compared with the Haloquadratum-dominated SS19, SS33, and SS37 salterns, suggesting low CRISPR diversity and possibly a high rate of CRISPR loss in the Haloquadratum-dominated salterns. After CRISPR detection, spacers were aligned against haloviral genomes to map virus to host. While most alignments linked viruses to Haloquadratum walsbyi, there were clusters of interactions with less abundant Haloarcula and Haloferax. Further examination of the dimer and codon usage differences between paired viruses and their hosts and detection of cas genes in the salterns confirmed both the plausibility of virus-host interactions and the possibility of CRISPR activity. Taken together, our studies suggest CRISPR loss in archaeal hosts controls the level of virus proliferation and the nutrient turnover viruses induce in these environments.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 551
Author(s):  
Katrina Brudzynski

The fundamental feature of “active honeys” is the presence and concentration of antibacterial compounds. Currently identified compounds and factors have been described in several review papers without broader interpretation or links to the processes for their formation. In this review, we indicate that the dynamic, antagonistic/competitive microbe–microbe and microbe–host interactions are the main source of antibacterial compounds in honey. The microbial colonization of nectar, bees and honey is at the center of these interactions that in consequence produce a range of defence molecules in each of these niches. The products of the microbial interference and exploitive competitions include antimicrobial peptides, antibiotics, surfactants, inhibitors of biofilm formation and quorum sensing. Their accumulation in honey by horizontal transfer might explain honey broad-spectrum, pleiotropic, antibacterial activity. We conclude that honey is an ecological reservoir of antibacterial compounds produced by antagonistic microbial interactions in plant nectars, honey and honey bee. Thus, refocusing research on secondary metabolites resulting from these microbial interactions might lead to discovery of new antibacterial compounds in honey that are target-specific, i.e., acting on specific cellular components or inhibiting the essential cellular function.


2020 ◽  
Author(s):  
Sohta Ishihama ◽  
Tatsuya Yoshida ◽  
Satoya Yoshida ◽  
Noriyuki Ouchi ◽  
Yu Mori ◽  
...  

Abstract Fatty acid constitutes a major energy substrate in the heart to fuel contraction under aerobic conditions. Ischemia downregulates fatty acid metabolism to adapt to the limited oxygen supply and makes glucose the preferred substrate. However, the mechanism of the myocardial metabolic shift during ischemia remains unknown. Here, we show that cardiomyocyte secretion of lipoprotein lipase (LPL), a principal enzyme that converts triglycerides to free fatty acids and glycerol, increased during myocardial infarction (MI). Cardiomyocyte-specific LPL deficiency enhanced cardiac dysfunction and apoptosis following MI. Deficiency of aquaporin 7 (AQP7), a glycerol channel in cardiomyocytes, increased the myocardial infarct size and apoptosis in response to ischemia. Ischemic conditions activated glycerol-3-phosphate dehydrogenase 2 (GPD2), which converts glycerol-3-phosphate into dihydroxyacetone phosphate to facilitate ATP synthesis from glycerol. Conversely, GPD2 deficiency exacerbated cardiac dysfunction after acute MI. Together, these results identify that LPL/AQP7/GPD2-mediated glycerol metabolism plays an important role to bridge glucose and lipid metabolism in MI and prevent myocardial ischemia-related damage.


2009 ◽  
Vol 191 (13) ◽  
pp. 4307-4315 ◽  
Author(s):  
Katherine E. Sherwood ◽  
David José Cano ◽  
Julie A. Maupin-Furlow

ABSTRACT Although glycerol is the primary carbon source available to halophilic heterotrophic communities, little is known regarding haloarchaeal glycerol metabolism. In this study, a gene encoding a glycerol kinase homolog (glpK; HVO_1541) was deleted from the genome of the haloarchaeon Haloferax volcanii by a markerless knockout strategy. The glpK mutant, KS4, readily grew on yeast extract-peptone complex medium and glucose minimal medium but was incapable of growth on glycerol. Glycerol kinase activity was dependent on the glpK gene and readily detected in cells grown on glucose and/or glycerol, with the activity level higher in medium supplemented with glycerol (with or without glucose) than in medium with glucose alone. An analysis of carbon utilization revealed that glycerol suppressed the metabolism of glucose in both the parent H26 and glpK mutant strains, with catabolite repression more pronounced in the glycerol kinase mutant. Transcripts specific for glpK and an upstream gene, gpdA, encoding a homolog of glycerol-3-phosphate dehydrogenase subunit A, were upregulated (8- and 74-fold, respectively) in the presence of glycerol and glucose compared to those in the presence of glucose alone. Furthermore, glpK was transcriptionally linked to the gpdC gene of the putative glycerol-3-phosphate dehydrogenase operon (gpdABC), based on the findings of reverse transcriptase PCR analysis. The results presented here provide genetic and biochemical evidence that glycerol metabolism proceeds through a glycerol kinase encoded by glpK and suggest that a glycerol-3-phosphate dehydrogenase encoded by the upstream gpdABC operon is also involved in this pathway. Furthermore, our findings reveal a unique example of glycerol-induced repression of glucose metabolism in H. volcanii.


Sign in / Sign up

Export Citation Format

Share Document