scholarly journals Live cell imaging of Salmonella Typhimurium interaction with zebrafish larvae after injection and immersion delivery methods

Author(s):  
Macarena A Varas ◽  
Alonso Fariña ◽  
Francisco Díaz-Pascual ◽  
Javiera Ortíz-Severín ◽  
Andrés E Marcoleta ◽  
...  

Surrogate host models have been employed to study bacterial virulence mechanisms of important human pathogens. Particularly, zebrafish (Danio rerio) has been used to determine the role of vertebrate innate immunity during bacterial infections. The easy-to-obtain large number of embryos and optical transparency of larvae allow live cell imaging of the infection progress and the major cellular types of the innate immune system that develop during the first days of embryogenesis. In zebrafish model, microinjecting bacteria into embryos and/or larvae can cause infection. Alternatively, an infection can be generated by static immersion of larvae on a microbial suspension. Both methods differ in the mode and time of infection, inoculum size and host response. In this work, we compare the in vivo immune response induced by Salmonella enterica serovar Typhimurium (S. Typhimurium) inoculated by immersion and microinjection in zebrafish larvae. To this end, an immersion protocol using transgenic zebrafish larvae was developed for in vivo monitoring of GFP-tagged S. Typhimurium infection progress and immune response during 72 h. The infection progress was compared to that of zebrafish larvae inoculated by microinjection. Our results in zebrafish corroborate previous Salmonella virulence studies in murine models and reveal that host-pathogen interaction not only depends on the virulence of the strain, but also on the inoculation method and host conditions.

2016 ◽  
Author(s):  
Macarena A Varas ◽  
Alonso Fariña ◽  
Francisco Díaz-Pascual ◽  
Javiera Ortíz-Severín ◽  
Andrés E Marcoleta ◽  
...  

Surrogate host models have been employed to study bacterial virulence mechanisms of important human pathogens. Particularly, zebrafish (Danio rerio) has been used to determine the role of vertebrate innate immunity during bacterial infections. The easy-to-obtain large number of embryos and optical transparency of larvae allow live cell imaging of the infection progress and the major cellular types of the innate immune system that develop during the first days of embryogenesis. In zebrafish model, microinjecting bacteria into embryos and/or larvae can cause infection. Alternatively, an infection can be generated by static immersion of larvae on a microbial suspension. Both methods differ in the mode and time of infection, inoculum size and host response. In this work, we compare the in vivo immune response induced by Salmonella enterica serovar Typhimurium (S. Typhimurium) inoculated by immersion and microinjection in zebrafish larvae. To this end, an immersion protocol using transgenic zebrafish larvae was developed for in vivo monitoring of GFP-tagged S. Typhimurium infection progress and immune response during 72 h. The infection progress was compared to that of zebrafish larvae inoculated by microinjection. Our results in zebrafish corroborate previous Salmonella virulence studies in murine models and reveal that host-pathogen interaction not only depends on the virulence of the strain, but also on the inoculation method and host conditions.


Blood ◽  
2006 ◽  
Vol 108 (13) ◽  
pp. 3976-3978 ◽  
Author(s):  
Stephen A. Renshaw ◽  
Catherine A. Loynes ◽  
Daniel M.I. Trushell ◽  
Stone Elworthy ◽  
Philip W. Ingham ◽  
...  

Abstract We have established an in vivo model for genetic analysis of the inflammatory response by generating a transgenic zebrafish line that expresses GFP under the neutrophil-specific myeloperoxidase promoter. We show that inflammation is induced after transection of the tail of zebrafish larvae and that this inflammation subsequently resolves over a similar time course to mammalian systems. Quantitative data can be generated from this model by counting of fluorescent cells or by digital image analysis. In addition, we show that the resolution of experimentally induced inflammation can be inhibited by the addition of a pancaspase inhibitor, zVD.fmk, demonstrating that experimental manipulation of the resolution of inflammation is possible in this model.


2017 ◽  
Author(s):  
Amy Kenyon ◽  
Daria Gavriouchkina ◽  
Giorgio Napolitani ◽  
Vincenzo Cerundolo ◽  
Tatjana Sauka-Spengler

ABSTRACTA complex network of inflammation succeeds somatic cell transformation and malignant disease. Immune cells and their associated molecules are responsible for detecting and eliminating cancer cells as they establish themselves as the precursors of a tumour. By the time a patient has a detectable solid tumour, cancer cells have escaped the initial immune response mechanisms. To date, no model exists for studying the underlying mechanisms that govern the initial phase of the immune response when transformed cells become precursors of cancer. Here we describe the development of a double binary zebrafish model designed for exploring regulatory programming of the myeloid cells as they respond to oncogenic transformed melanocytes. A hormone-inducible binary system allows for temporal control of different Ras-oncogenes (NRasK61Q, HRasG12V, KRasG12V) expression in melanocytes, enabling analysis of melanocyte transformation and melanoma initiation. This model was coupled to binary cell-specific biotagging models allowing in vivo biotinylation and subsequent isolation of macrophage or neutrophil nuclei for regulatory profiling of their active transcriptomes. Nuclear transcriptional profiling of neutrophils, performed for the first time as they respond to the earliest precursors of melanoma in vivo, revealed an intricate landscape of regulatory factors that may promote progression to melanoma including fgf1, fgf6, cathepsin H, cathepsin L, galectin 1 and galectin 3. The model presented here provides a powerful platform to study the myeloid response to the earliest precursors of melanoma.Summary StatementWe present an innovative double binary zebrafish model for exploring the underlying regulatory mechanisms that govern the myeloid response mechanisms at the onset of melanoma.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 445
Author(s):  
Daniela Zizioli ◽  
Simona Bernardi ◽  
Marco Varinelli ◽  
Mirko Farina ◽  
Luca Mignani ◽  
...  

Zebrafish has proven to be a versatile and reliable experimental in vivo tool to study human hematopoiesis and model hematological malignancies. Transgenic technologies enable the generation of specific leukemia types by the expression of human oncogenes under specific promoters. Using this technology, a variety of myeloid and lymphoid malignancies zebrafish models have been described. Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia characterized by the BCR-ABL1 fusion gene, derived from the t (9;22) translocation causing the Philadelphia Chromosome (Ph). The BCR-ABL1 protein is a constitutively activated tyrosine kinas inducing the leukemogenesis and resulting in an accumulation of immature leukemic cells into bone marrow and peripheral blood. To model Ph+ CML, a transgenic zebrafish line expressing the human BCR-ABL1 was generated by the Gal4/UAS system, and then crossed with the hsp70-Gal4 transgenic line. The new line named (BCR-ABL1pUAS:CFP/hsp70-Gal4), presented altered expression of hematopoietic markers during embryonic development compared to controls and transgenic larvae showed proliferating hematopoietic cells in the caudal hematopoietic tissue (CHT). The present transgenic zebrafish would be a robust CML model and a high-throughput drug screening tool.


2020 ◽  
Vol 7 (8) ◽  
pp. 2410-2422
Author(s):  
Irene Brandts ◽  
Marlid Garcia-Ordoñez ◽  
Lluis Tort ◽  
Mariana Teles ◽  
Nerea Roher

Polystyrene nanoplastics are internalized in zebrafish liver cells, accumulating in lysosomes, and in zebrafish larvae but do not affect the larval suvival to a lethal infection.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Anna Iervolino ◽  
Tim Lange ◽  
Florian Siegerist ◽  
Maximilian Schindler ◽  
Giovambattista Capasso ◽  
...  

Abstract Background and Aims The zebrafish is a powerful animal model to study the glomerular morphology and the function of the permselectivity of the glomerular filtration barrier. Since zebrafish larvae develop quickly and can be bred to transparency, in vivo observation of these animals is possible. At 48 hours post fertilization (dpf), zebrafish develop a single filtering glomerulus which is attached to a pair of renal tubules. Like in mammals, the glomerular filtration barrier consists of a fenestrated endothelium, the glomerular basement membrane (GBM) and interdigitating podocyte foot processes bridged by a molecularly conserved slit diaphragm. By the use of genetically modified zebrafish strains with fluorescently labeled podocytes, it is possible to study alterations of the glomerulus during the development of renal disease directly in vivo and in vitro. As an injury model we used the nitroreductase/metronidazole (NTR/MTZ) zebrafish line to induce podocyte apoptosis and detachment from the GBM. Moreover, treatment of these larvae with MTZ induces glomerular injury that mimics focal segmental glomerulosclerosis (FSGS). The aim of our study was to establish a glomeruli isolation method which allows us to identify deregulation of miRNAs and mRNAs in the injured glomeruli by sequencing. Method The transgenic zebrafish strain Cherry (Tg(nphs2:Eco.nfsB-mCherry); mitfaw2/w2; mpv17a9/a9) which expresses the prokaryotic enzyme nitroreductase (NTR) fused to mCherry, a red fluorescent protein, under the control of the podocyte-specific podocin (nphs2) promoter in a transparent zebrafish strain, was used. The NTR/MTZ is a model of cell ablation to mimic podocyte injury. The prodrug MTZ (80 µM) is converted into a cytotoxin by NTR leading to a dose-dependent apoptosis exclusively in NTR-expressing podocytes. To induce podocyte injury, we treated Cherry larvae at 4 days post fertilization with MTZ (80 µM) freshly dissolved in 0.1% DMSO-E3 medium for 48 hours. Control larvae were treated with 0.1% DMSO-E3 medium. The treatment was stopped by a MTZ washout at 6 dpf. In order to perform the miRNA and mRNA sequencing on glomeruli isolated from MTZ-treated and control larvae we tried to establish a method to obtain total RNA samples of good quality. For this purpose, three different approaches were tested and validated: 1) Sieving method, 2) Fluorescence-Activated Cell Sorting method (FACS), and 3) manual isolation of glomeruli by using a micropipette. Results Zebrafish larvae developed a glomerular damage similar to FSGS after MTZ-treatment. MTZ-treated larvae showed severe pericardial edema, a reduction of the nephrin and podocin expression, proteinuria and an increased mortality rate at 8 dpf. After many tests we showed that glomeruli isolation using the sieving method and FACS were not efficient due to contaminations with other organs (sieving) and a loss of a large amount of cells per sample (FACS), respectively. Samples of the required quality for sequencing resulted only from the manual glomeruli isolation. Conclusion Here we describe methods to isolate fluorescent glomeruli from transgenic zebrafish larvae. For our studies, we used the NTZ/MTR kidney disease model in order to identify mRNAs and miRNAs regulated in response to glomerular damage. This technique will further allow to screen for healing drugs in high-throughput experiments.


2018 ◽  
Vol 55 (10) ◽  
pp. 675-684 ◽  
Author(s):  
Kun Wang ◽  
Sen Zhao ◽  
Bowen Liu ◽  
Qianqian Zhang ◽  
Yaqi Li ◽  
...  

BackgroundBrain arteriovenous malformations (BAVM) represent a congenital anomaly of the cerebral vessels with a prevalence of 10–18/100 000. BAVM is the leading aetiology of intracranial haemorrhage in children. Our objective was to identify gene variants potentially contributing to disease and to better define the molecular aetiology underlying non-syndromic sporadic BAVM.MethodsWe performed whole-exome trio sequencing of 100 unrelated families with a clinically uniform BAVM phenotype. Pathogenic variants were then studied in vivo using a transgenic zebrafish model.ResultsWe identified four pathogenic heterozygous variants in four patients, including one in the established BAVM-related gene, ENG, and three damaging variants in novel candidate genes: PITPNM3, SARS and LEMD3, which we then functionally validated in zebrafish. In addition, eight likely pathogenic heterozygous variants (TIMP3, SCUBE2, MAP4K4, CDH2, IL17RD, PREX2, ZFYVE16 and EGFR) were identified in eight patients, and 16 patients carried one or more variants of uncertain significance. Potential oligogenic inheritance (MAP4K4 with ENG, RASA1 with TIMP3 and SCUBE2 with ENG) was identified in three patients. Regulation of sma- and mad-related proteins (SMADs) (involved in bone morphogenic protein (BMP)/transforming growth factor beta (TGF-β) signalling) and vascular endothelial growth factor (VEGF)/vascular endotheliual growth factor recepter 2 (VEGFR2) binding and activity (affecting the VEGF signalling pathway) were the most significantly affected biological process involved in the pathogenesis of BAVM.ConclusionsOur study highlights the specific role of BMP/TGF-β and VEGF/VEGFR signalling in the aetiology of BAVM and the efficiency of intensive parallel sequencing in the challenging context of genetically heterogeneous paradigm.


Blood ◽  
2010 ◽  
Vol 116 (15) ◽  
pp. 2803-2811 ◽  
Author(s):  
Kevin B. Walters ◽  
Julie M. Green ◽  
Jill C. Surfus ◽  
Sa Kan Yoo ◽  
Anna Huttenlocher

Abstract CXCR4 is a G protein–coupled chemokine receptor that has been implicated in the pathogenesis of primary immunodeficiency disorders and cancer. Autosomal dominant gain-of-function truncations of CXCR4 are associated with warts, hypo-gammaglobulinemia, infections, and myelokathexis (WHIM) syndrome, a primary immunodeficiency disorder characterized by neutropenia and recurrent infections. Recent progress has implicated CXCR4-SDF1 (stromal cell-derived factor 1) signaling in regulating neutrophil homeostasis, but the precise role of CXCR4-SDF1 interactions in regulating neutrophil motility in vivo is not known. Here, we use the optical transparency of zebrafish to visualize neutrophil trafficking in vivo in a zebrafish model of WHIM syndrome. We demonstrate that expression of WHIM mutations in zebrafish neutrophils induces neutrophil retention in hematopoietic tissue, impairing neutrophil motility and wound recruitment. The neutrophil retention signal induced by WHIM truncation mutations is SDF1 dependent, because depletion of SDF1 with the use of morpholino oligonucleotides restores neutrophil chemotaxis to wounds. Moreover, localized activation of a genetically encoded, photoactivatable Rac guanosine triphosphatase is sufficient to direct migration of neutrophils that express the WHIM mutation. The findings suggest that this transgenic zebrafish model of WHIM syndrome may provide a valuable tool to screen for agents that modify CXCR4-SDF1 retention signals.


2019 ◽  
Author(s):  
Hannah M. Isles ◽  
Kimberly Herman ◽  
Anne L. Robertson ◽  
Catherine A. Loynes ◽  
Lynne R. Prince ◽  
...  

AbstractThe inappropriate retention of neutrophils in the lung is a major driver of the excessive tissue damage characteristic of respiratory inflammatory diseases including COPD, ARDS and cystic fibrosis. The molecular programmes which orchestrate neutrophil recruitment to inflammatory sites through chemotactic guidance have been well studied. However, how neutrophil sensitivity to these cues is modulated during inflammation resolution is not understood. The identification of neutrophil reverse migration as a mechanism of inflammation resolution and the ability to modulate this therapeutically has identified a new target to treat inflammatory disease. Here we investigate the role of the CXCL12/CXCR4 signalling axis in modulating neutrophil retention at inflammatory sites. We used an in vivo tissue injury model to study inflammation using transgenic zebrafish larvae. Expression of cxcl12a and cxcr4b during the tissue damage response was assessed using in situ hybridisation and analysis of RNA sequencing data. CRISPR/Cas9 was used to knockdown cxcl12a and cxcr4b in zebrafish larvae. The CXCR4 antagonist AMD3100 was used to block the Cxcl12/Cxcr4 signalling axis pharmacologically. We identified that cxcr4b and cxcl12a are expressed at the wound site in zebrafish larvae during the inflammatory response. Following tail-fin transection, removal of neutrophils from inflammatory sites is significantly increased in cxcr4b and cxcl12a CRISPR knockdown larvae. Pharmacological inhibition of the Cxcl12/Cxcr4 signalling axis accelerates inflammation resolution, an effect caused by an increase in neutrophil reverse migration. The findings of this study suggest that CXCR4/CXCL12 signalling may play an important role in neutrophil retention at inflammatory sites, identifying a potential new target for the therapeutic removal of neutrophils from the lung in chronic inflammatory disease.


1996 ◽  
Vol 40 (5) ◽  
pp. 1201-1207 ◽  
Author(s):  
N Masuda ◽  
Y Takahashi ◽  
M Otsuki ◽  
E Ibuki ◽  
H Miyoshi ◽  
...  

The in vitro and in vivo activities of CS-940, a new 6-fluoro-8-difluoromethoxy quinolone, were compared with those of ciprofloxacin, tosufloxacin, sparfloxacin, and levofloxacin. The in vitro activity of CS-940 against gram-positive bacteria was nearly equal to or greater than those of the other quinolones tested. In particular, CS-940 was two to eight times more active against methicillin-resistant Staphylococcus aureus than the other quinolones, at the MIC at which 90% of the clinical isolates are inhibited. Against gram-negative bacteria, the activity of CS-940 was comparable to or greater than those of tosufloxacin, sparfloxacin, and levofloxacin, while it was lower than that of ciprofloxacin. The activity of CS-940 was largely unaffected by medium, inoculum size, or the addition of horse serum, but it was decreased under acidic conditions, as was also seen with the other quinolones tested. CS-940 showed potent bactericidal activity against S. aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. In oral treatment of mouse systemic infections caused by S. aureus, Streptococcus pneumoniae, Streptococcus pyogenes, E. coli, K. pneumoniae, Serratia marcescens, and P. aeruginosa, CS-940 was more effective than ciprofloxacin, sparfloxacin, and levofloxacin against all strains tested. Against experimental pneumonia with K. pneumoniae in mice, CS-940 was the most effective of all the quinolones tested. These results suggest that CS-940 may be effective in the therapy of various bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document