scholarly journals Live cell imaging of nuclear actin filaments and heterochromatic repair foci in Drosophila and mouse cells

Author(s):  
Colby See ◽  
Deepak Arya ◽  
Emily Lin ◽  
Irene Chiolo

Pericentromeric heterochromatin largely comprises repeated DNA sequences prone to aberrant recombination during double-strand break (DSB) repair. Studies in Drosophila and mouse cells revealed that ‘safe’ homologous recombination (HR) repair of these sequences relies on the relocalization of repair sites to outside the heterochromatin domain before Rad51 recruitment. Relocalization requires a striking network of nuclear actin filaments (F-actin) and myosins generating directed motions. Understanding this pathway requires the ability to detect nuclear actin filaments that are significantly less abundant than cytoplasmic filaments, and to image and track repair sites for long time periods. Here we describe an optimized protocol for live cell imaging of nuclear F-actin in response to IR in Drosophila cells, and for repair focus tracking in mouse cells, including imaging setup, image processing approaches, and analytical methods. We emphasize approaches that can be applied to identify the most effective fluorescent markers for live cell imaging, strategies to minimize photobleaching and phototoxicity with a DeltaVision deconvolution microscope, and image processing and analysis methods using SoftWoRx and Imaris software. These approaches enable a deeper understanding of the spatial and temporal dynamics of heterochromatin repair and have broad applicability in the fields of nuclear architecture, nuclear dynamics, and DNA repair.

Author(s):  
Colby See ◽  
Deepak Arya ◽  
Emily Lin ◽  
Irene Chiolo

Pericentromeric heterochromatin largely comprises repeated DNA sequences prone to aberrant recombination during double-strand break (DSB) repair. Studies in Drosophila and mouse cells revealed that ‘safe’ homologous recombination (HR) repair of these sequences relies on the relocalization of repair sites to outside the heterochromatin domain before Rad51 recruitment. Relocalization requires a striking network of nuclear actin filaments (F-actin) and myosins generating directed motions. Understanding this pathway requires the ability to detect nuclear actin filaments that are significantly less abundant than cytoplasmic filaments, and to image and track repair sites for long time periods. Here we describe an optimized protocol for live cell imaging of nuclear F-actin in response to IR in Drosophila cells, and for repair focus tracking in mouse cells, including imaging setup, image processing approaches, and analytical methods. We emphasize approaches that can be applied to identify the most effective fluorescent markers for live cell imaging, strategies to minimize photobleaching and phototoxicity with a DeltaVision deconvolution microscope, and image processing and analysis methods using SoftWoRx and Imaris software. These approaches enable a deeper understanding of the spatial and temporal dynamics of heterochromatin repair and have broad applicability in the fields of nuclear architecture, nuclear dynamics, and DNA repair.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Yuki Takamatsu ◽  
Olga Dolnik ◽  
Takeshi Noda ◽  
Stephan Becker

Abstract Background Live-cell imaging is a powerful tool for visualization of the spatio-temporal dynamics of moving signals in living cells. Although this technique can be utilized to visualize nucleocapsid transport in Marburg virus (MARV)- or Ebola virus-infected cells, the experiments require biosafety level-4 (BSL-4) laboratories, which are restricted to trained and authorized individuals. Methods To overcome this limitation, we developed a live-cell imaging system to visualize MARV nucleocapsid-like structures using fluorescence-conjugated viral proteins, which can be conducted outside BSL-4 laboratories. Results Our experiments revealed that nucleocapsid-like structures have similar transport characteristics to those of nucleocapsids observed in MARV-infected cells, both of which are mediated by actin polymerization. Conclusions We developed a non-infectious live cell imaging system to visualize intracellular transport of MARV nucleocapsid-like structures. This system provides a safe platform to evaluate antiviral drugs that inhibit MARV nucleocapsid transport.


2007 ◽  
Vol 179 (6) ◽  
pp. 1093-1094 ◽  
Author(s):  
Maria Carmo-Fonseca

Recent progress in live cell imaging suggests a role for nuclear actin in chromatin movement. In this issue, for the first time, a gene locus moving toward a subnuclear compartment was tracked. Motion of the locus is actin dependent, raising the question of whether chromatin movements are random or directed.


2012 ◽  
Vol 45 (18) ◽  
pp. 190-195
Author(s):  
Imre Pechan ◽  
Levente Ficsór ◽  
Eszter Losonczi ◽  
Csaba Pribenszky

2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Chan-Gi Pack ◽  
Haruka Yukii ◽  
Akio Toh-e ◽  
Tai Kudo ◽  
Hikaru Tsuchiya ◽  
...  

2019 ◽  
Author(s):  
Yuki Takamatsu ◽  
Takeshi Noda ◽  
Stephan Becker

AbstractLive-cell imaging is a powerful tool for visualization of the spatio-temporal dynamics of living organisms. Although this technique is utilized to visualize nucleocapsid transport in Marburg virus (MARV)- or Ebola virus-infected cells, the experiments require biosafety level-4 (BSL-4) laboratories, which are restricted to trained and authorized individuals. To overcome this limitation, we developed a live-cell imaging system to visualize MARV nucleocapsid-like structures using fluorescence-conjugated viral proteins, which can be conducted outside BSL-4 laboratories. Our experiments revealed that nucleocapsid-like structures have similar transport characteristics to nucleocapsids observed in MARV-infected cells. This system provides a safe platform to evaluate antiviral drugs that inhibit MARV nucleocapsid transport.


2021 ◽  
Author(s):  
Richard S Muniz ◽  
Paul C Campbell ◽  
Thomas E Sladewski ◽  
Lars D Renner ◽  
Christopher L de Graffenried

Trypanosoma brucei, the causative agent of human African trypanosomiasis, employs a flagellum for dissemination within the parasite's mammalian and insect hosts. T. brucei cells are highly motile in culture and must be able to move in all three dimensions for reliable cell division. These characteristics have made long-term microscopic imaging of live T. brucei cells challenging, which has limited our understanding of a variety of important cell-cycle events. To address this issue, we have devised an imaging approach that confines cells to small volumes that can be imaged continuously for up to 24 h. This system employs cast agarose microwells generated using a PDMS stamp that can be made with different dimensions to maximize cell viability and imaging quality. Using this approach, we have imaged individual T. brucei through multiple rounds of cell division with high spatial and temporal resolution. We have employed this method to study the differential rate of T. brucei daughter cell division and show that the approach is compatible with loss-of-function experiments such as small molecule inhibition and RNAi. We have also developed a strategy that employs in-well "sentinel" cells to monitor potential toxicity due to imaging. This live-cell imaging method will provide a novel avenue for studying a wide variety of cellular events in trypanosomatids that have previously been inaccessible.


2007 ◽  
Vol 35 (16) ◽  
pp. e107-e107 ◽  
Author(s):  
B. I. Lindhout ◽  
P. Fransz ◽  
F. Tessadori ◽  
T. Meckel ◽  
P. J.J. Hooykaas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document