scholarly journals An integrated pipeline for NGS and annotation of the complete mitochondrial genome of the giant intestinal fluke, Fasciolopsis buski (Lankester,1857) Loss, 1899 (Digenea: Fasciolidae)

Author(s):  
Devendra Kumar Biswal ◽  
Sudeep Ghatani ◽  
Jollin A Shylla ◽  
Ranjana Sahu ◽  
Nandita Mullapudi ◽  
...  

Helminths include both parasitic nematodes (roundworms) and platyhelminths (trematode and cestode flatworms) that are abundant, and are of clinical importance. The genetic characterization of parasitic flatworms using advanced molecular tools is central to the diagnosis and control of infections. Although the nuclear genome houses suitable genetic markers (e.g., in ribosomal (r) DNA) for species identification and molecular characterization, the mitochondrial (mt) genome consistently provides a rich source of novel markers for informative systematics and epidemiological studies. In the last decade, there have been some important advances in mtDNA genomics of helminths, especially lung flukes, liver flukes and intestinal flukes. Fasciolopsis buski, often called the giant intestinal fluke, is one of the largest digenean trematodes infecting humans and found primarily in Asia, in particular the Indian subcontinent. Next-generation sequencing (NGS) technologies now provide opportunities for high throughput sequencing, assembly and annotation within a short span of time. Herein, we describe a high-throughput sequencing and bioinformatics pipeline for mt genomics for F. buski that emphasizes the utility of short read NGS platforms such as Ion Torrent and Illumina in successfully sequencing and assembling the mt genome using innovative approaches for PCR primer design as well as assembly. We took advantage of our NGS whole genome sequence data (unpublished so far) for F. buski and its comparison with available data for the Fasciola hepatica mtDNA as the reference genome for design of precise and specific primers for amplification of mt genome sequences from F. buski. A long-range PCR was carried out to create a NGS library enriched in mt DNA sequences. Two different NGS platforms were employed for complete sequencing, assembly and annotation of the F. buski mt genome. The complete mt genome sequences of the intestinal fluke comprise 14,118 bp and is thus the shortest trematode mitochondrial genome sequenced to date. The noncoding control regions are separated into two parts by the tRNA-Gly gene and donot contain either tandem repeats or secondary structures, which are typical for trematode control regions. The gene content and arrangement are identical to that of F. hepatica. The F. buski mtDNA genome has a close resemblance with F. hepatica and has a similar gene order tallying with that of other trematodes. The mtDNA for the intestinal fluke is reported herein for the first time by our group that would help invesigate Fasciolidae taxonomy and systematics with the aid of mtDNA NGS data. More so, it would serve as a resource for comparative mitochondrial genomics and systematic studies of trematode parasites.

2013 ◽  
Author(s):  
Devendra Kumar Biswal ◽  
Sudeep Ghatani ◽  
Jollin A Shylla ◽  
Ranjana Sahu ◽  
Nandita Mullapudi ◽  
...  

Helminths include both parasitic nematodes (roundworms) and platyhelminths (trematode and cestode flatworms) that are abundant, and are of clinical importance. The genetic characterization of parasitic flatworms using advanced molecular tools is central to the diagnosis and control of infections. Although the nuclear genome houses suitable genetic markers (e.g., in ribosomal (r) DNA) for species identification and molecular characterization, the mitochondrial (mt) genome consistently provides a rich source of novel markers for informative systematics and epidemiological studies. In the last decade, there have been some important advances in mtDNA genomics of helminths, especially lung flukes, liver flukes and intestinal flukes. Fasciolopsis buski, often called the giant intestinal fluke, is one of the largest digenean trematodes infecting humans and found primarily in Asia, in particular the Indian subcontinent. Next-generation sequencing (NGS) technologies now provide opportunities for high throughput sequencing, assembly and annotation within a short span of time. Herein, we describe a high-throughput sequencing and bioinformatics pipeline for mt genomics for F. buski that emphasizes the utility of short read NGS platforms such as Ion Torrent and Illumina in successfully sequencing and assembling the mt genome using innovative approaches for PCR primer design as well as assembly. We took advantage of our NGS whole genome sequence data (unpublished so far) for F. buski and its comparison with available data for the Fasciola hepatica mtDNA as the reference genome for design of precise and specific primers for amplification of mt genome sequences from F. buski. A long-range PCR was carried out to create a NGS library enriched in mt DNA sequences. Two different NGS platforms were employed for complete sequencing, assembly and annotation of the F. buski mt genome. The complete mt genome sequences of the intestinal fluke comprise 14,118 bp and is thus the shortest trematode mitochondrial genome sequenced to date. The noncoding control regions are separated into two parts by the tRNA-Gly gene and donot contain either tandem repeats or secondary structures, which are typical for trematode control regions. The gene content and arrangement are identical to that of F. hepatica. The F. buski mtDNA genome has a close resemblance with F. hepatica and has a similar gene order tallying with that of other trematodes. The mtDNA for the intestinal fluke is reported herein for the first time by our group that would help invesigate Fasciolidae taxonomy and systematics with the aid of mtDNA NGS data. More so, it would serve as a resource for comparative mitochondrial genomics and systematic studies of trematode parasites.


2013 ◽  
Author(s):  
Devendra Kumar Biswal ◽  
Sudeep Ghatani ◽  
Jollin A Shylla ◽  
Ranjana Sahu ◽  
Nandita Mullapudi ◽  
...  

Helminths include both parasitic nematodes (roundworms) and platyhelminths (trematode and cestode flatworms) that are abundant, and are of clinical importance. The genetic characterization of parasitic flatworms using advanced molecular tools is central to the diagnosis and control of infections. Although the nuclear genome houses suitable genetic markers (e.g., in ribosomal (r) DNA) for species identification and molecular characterization, the mitochondrial (mt) genome consistently provides a rich source of novel markers for informative systematics and epidemiological studies. In the last decade, there have been some important advances in mtDNA genomics of helminths, especially lung flukes, liver flukes and intestinal flukes. Fasciolopsis buski, often called the giant intestinal fluke, is one of the largest digenean trematodes infecting humans and found primarily in Asia, in particular the Indian subcontinent. Next-generation sequencing (NGS) technologies now provide opportunities for high throughput sequencing, assembly and annotation within a short span of time. Herein, we describe a high-throughput sequencing and bioinformatics pipeline for mt genomics for F. buski that emphasizes the utility of short read NGS platforms such as Ion Torrent and Illumina in successfully sequencing and assembling the mt genome using innovative approaches for PCR primer design as well as assembly. We took advantage of our NGS whole genome sequence data (unpublished so far) for F. buski and its comparison with available data for the Fasciola hepatica mtDNA as the reference genome for design of precise and specific primers for amplification of mt genome sequences from F. buski. A long-range PCR was carried out to create a NGS library enriched in mt DNA sequences. Two different NGS platforms were employed for complete sequencing, assembly and annotation of the F. buski mt genome. The complete mt genome sequences of the intestinal fluke comprise 14,118 bp and is thus the shortest trematode mitochondrial genome sequenced to date. The noncoding control regions are separated into two parts by the tRNA-Gly gene and donot contain either tandem repeats or secondary structures, which are typical for trematode control regions. The gene content and arrangement are identical to that of F. hepatica. The F. buski mtDNA genome has a close resemblance with F. hepatica and has a similar gene order tallying with that of other trematodes. The mtDNA for the intestinal fluke is reported herein for the first time by our group that would help invesigate Fasciolidae taxonomy and systematics with the aid of mtDNA NGS data. More so, it would serve as a resource for comparative mitochondrial genomics and systematic studies of trematode parasites.


2012 ◽  
Vol 279 (1739) ◽  
pp. 2825-2830 ◽  
Author(s):  
Céline Bon ◽  
Véronique Berthonaud ◽  
Frédéric Maksud ◽  
Karine Labadie ◽  
Julie Poulain ◽  
...  

We performed high-throughput sequencing of DNA from fossilized faeces to evaluate this material as a source of information on the genome and diet of Pleistocene carnivores. We analysed coprolites derived from the extinct cave hyena ( Crocuta crocuta spelaea ), and sequenced 90 million DNA fragments from two specimens. The DNA reads enabled a reconstruction of the cave hyena mitochondrial genome with up to a 158-fold coverage. This genome, and those sequenced from extant spotted ( Crocuta crocuta ) and striped ( Hyaena hyaena ) hyena specimens, allows for the establishment of a robust phylogeny that supports a close relationship between the cave and the spotted hyena. We also demonstrate that high-throughput sequencing yields data for cave hyena multi-copy and single-copy nuclear genes, and that about 50 per cent of the coprolite DNA can be ascribed to this species. Analysing the data for additional species to indicate the cave hyena diet, we retrieved abundant sequences for the red deer ( Cervus elaphus ), and characterized its mitochondrial genome with up to a 3.8-fold coverage. In conclusion, we have demonstrated the presence of abundant ancient DNA in the coprolites surveyed. Shotgun sequencing of this material yielded a wealth of DNA sequences for a Pleistocene carnivore and allowed unbiased identification of diet.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Bhavna Hora ◽  
Naila Gulzar ◽  
Yue Chen ◽  
Konstantinos Karagiannis ◽  
Fangping Cai ◽  
...  

ABSTRACT High-throughput sequencing (HTS) has been widely used to characterize HIV-1 genome sequences. There are no algorithms currently that can directly determine genotype and quasispecies population using short HTS reads generated from long genome sequences without additional software. To establish a robust subpopulation, subtype, and recombination analysis workflow, we amplified the HIV-1 3′-half genome from plasma samples of 65 HIV-1-infected individuals and sequenced the entire amplicon (∼4,500 bp) by HTS. With direct analysis of raw reads using HIVE-hexahedron, we showed that 48% of samples harbored 2 to 13 subpopulations. We identified various subtypes (17 A1s, 4 Bs, 27 Cs, 6 CRF02_AGs, and 11 unique recombinant forms) and defined recombinant breakpoints of 10 recombinants. These results were validated with viral genome sequences generated by single genome sequencing (SGS) or the analysis of consensus sequence of the HTS reads. The HIVE-hexahedron workflow is more sensitive and accurate than just evaluating the consensus sequence and also more cost-effective than SGS. IMPORTANCE The highly recombinogenic nature of human immunodeficiency virus type 1 (HIV-1) leads to recombination and emergence of quasispecies. It is important to reliably identify subpopulations to understand the complexity of a viral population for drug resistance surveillance and vaccine development. High-throughput sequencing (HTS) provides improved resolution over Sanger sequencing for the analysis of heterogeneous viral subpopulations. However, current methods of analysis of HTS reads are unable to fully address accurate population reconstruction. Hence, there is a dire need for a more sensitive, accurate, user-friendly, and cost-effective method to analyze viral quasispecies. For this purpose, we have improved the HIVE-hexahedron algorithm that we previously developed with in silico short sequences to analyze raw HTS short reads. The significance of this study is that our standalone algorithm enables a streamlined analysis of quasispecies, subtype, and recombination patterns from long HIV-1 genome regions without the need of additional sequence analysis tools. Distinct viral populations and recombination patterns identified by HIVE-hexahedron are further validated by comparison with sequences obtained by single genome sequencing (SGS).


2021 ◽  
Vol 98 (5) ◽  
pp. 512-518
Author(s):  
K. O. Mironov ◽  
I. I. Gaponova ◽  
V. I. Korchagin ◽  
Yu. V. Mikhailova ◽  
A. A. Shelenkov ◽  
...  

The objective of this study was to characterize and compare antigenic and genetic characteristics of Streptococcus pneumoniae strains isolated from patients with invasive and non-invasive pneumococcal infections (PIs) by using the data of high-throughput sequencing.Materials and methods. A total of 158 S. pneumoniae strains were studied. All of them were isolated during different stages of the PEHASus multicenter study performed in 2015-2020. The data analysis was based on the information about whole-genome sequences of 46 strains isolated during the above study. Real-time PCR methods and high-throughput sequencing (the Illumina platform) were used for identification of serotypes. The SeroBA, PneumoCaT software and PubMLST.org website resources were used in the data processing.Results and discussion. The serotypes of all the studied strains were identified. A number of discrepancies among serotypes in serogroup 6 and one discordant result were revealed by the analysis of whole-genome sequences using 2 programs. The PCR methods were effectively used to characterize serotypes in 87% and 69% of the pathogens of invasive and non-invasive PIs, respectively. The serotypes contained in PCV13 accounted for 59% and 37%, while PPV23 serotypes accounted for 78% and 53% of the strains isolated from patients with invasive and non-invasive PIs, respectively. The data analysis was unable to identify either the dominant sequence type (a total of 81 sequence types have been identified) or clonal complexes, except for serotype 3 strains, thus demonstrating consistency with the data from previous studies suggesting the absence of a well-represented clonal structure of S. pneumoniae associated with pneumococcal meningitis in Russia.Conclusion. The obtained data made it possible to identify the distribution of the circulating serotypes and genetic characteristics of the strains isolated from PI patients, thus being instrumental for assessment of the effectiveness of the existing polyvalent vaccines and providing information for improvement of the PCR-based methods of serotyping.


Sign in / Sign up

Export Citation Format

Share Document