scholarly journals In-vitro Screening for Acetylcholinesterase enzyme Inhibition potential and Antioxidant Activity of Extracts of Ipomoea Aquatica Forsk: Therapeutic lead for Alzheimer's disease

Author(s):  
Sivaraman Dhanasekaran ◽  
Panneerselvam Perumal ◽  
Muralidharan Palayan
2014 ◽  
Vol 4 (9) ◽  
pp. 381 ◽  
Author(s):  
Mohammed Saleem Ali-Shtayeh ◽  
Rana Majed Jamous ◽  
Salam Yousef Abu Zaitoun ◽  
Iman Basem Qasem

Background: Cholinesterase inhibitory therapy serves as a strategy for the treatment of Alzheimer’s disease (AD). Several acetylcholinesterase inhibitors (AChEIs) are used for the symptomatic treatment of AD. These compounds have been reported to have adverse effects, including gastrointestinal disturbances. This study was therefore partly aimed at investigating in vitro possible AChEIs in herbal medicines traditionally used in Palestine to treat cognitive disorders, and to point out the role of these plants as potential sources for development of newly potent and safe natural therapeutic agents of AD. Assay of AChE activity plays an important role in vitro characterization of drugs including potential treatments for AD. The most widely used method, is based on Ellman’s method. The reactant used in this method shows chemical reactivity with oxime antidots and thiol leading to false positive reactions. A new alternative assay could be of high interest.Methods: The effect on AChE activity of 92 extracts of 47 medicinal plants were evaluated using a new micro-well plate AChE activity (NA-FB) and Ellman’s assays. In addition, antioxidant activity using DPPH was determined.Results: The main advantages of the new method (NA-FB) is that the colorimetric change is better observable visually allowing spectrophotometric as well as colorimetric assay, and does not show any chemical reactivity with thiol. 67.4% and 37% of extracts inhibited AChE by >50% using the NA-FB and Ellman’s assays, respectively. Using NA-FB assay, 84 extracts interacted reversibly with the enzyme, of which Mentha spicata (94.8%), Foeniculum vulgare (89.81), and Oxalis pes-caprae (89.21) were most potent, and 8 showed irreversible inhibition of  which leaves of Lupinus pilosus (92.02%) were most active. Antioxidant activity was demonstrated by 73 extracts Majorana syriaca (IC50 0.21mg/ml), and Rosmarinus officinalis (0.38) were the most active.Conclusions: NA-FB assay has shown to be simple, accurate, sensitive, spectrophotometric and colorimetric, and superior to Ellman’s, and therefore can be used efficiently for qualitative and quantitative studies of AChEI activities of extracts. Palestinian flora have shown to be a rich source for, new and promising agents (AChEIs) for the treatment of AD Further studies are needed to isolate and identify the active compounds responsible for AChEI activities.Keywords: Alzheimer's disease, ACh, medicinal plants, β-naphthyl acetate, micro-well plate AChE activity Assay (NA-FB)


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1952 ◽  
Author(s):  
Hye-Sun Lim ◽  
Yu Kim ◽  
Eunjin Sohn ◽  
Jiyeon Yoon ◽  
Bu-Yeo Kim ◽  
...  

Bojungikgi-tang (BJIGT; Bu Zhong Yi Qi Tang in China, Hochuekkito in Japan) is a traditional Oriental herbal formula comprised of eight medicinal herbs that has long been used for the treatment of digestive disorders. A recent clinical study from South Korea reported that BJIGT-gamibang administration may be effective in treating dementia. We aimed to establish scientific evidence for the anti-dementia effects of BJIGT using in vitro and in vivo experimental models. We measured amyloid- β (Aβ) aggregation, β-secretase (BACE), and antioxidant activity in a cell free system. Neuroprotective effects were assessed using CCK-8. Imprinting control region (ICR) mice were divided into the following six groups: Normal control, Aβ-injected, Aβ-injection + oral BJIGT gavage (200, 400, or 800 mg/kg/day), and Aβ-injection + oral morin administration (10 mg/kg/day). Subsequently, behavioral evaluations were conducted and brain samples were collected from all the animals and assessed. BJIGT enhanced inhibition of Aβ aggregation and BACE activity in vivo, as well as antioxidant activity in in vitro, cell-free systems. BJIGT also exerted neuroprotective effects in a hydroperoxide (H2O2)-induced damaged HT22 hippocampal cell line model. In addition, BJIGT administration significantly ameliorated cognitive impairments in Aβ-injected mice, as assessed by the passive avoidance and Y-maze tests. Furthermore, BJIGT treatment suppressed Aβ aggregation and expression, as well as expression of Aβ, NeuN, and brain-derived neurotrophic factor (BDNF) in the hippocampi of Aβ-injected mice. Overall, our results demonstrate that, with further testing in clinical populations, BJIGT may have great utility for the treatment of dementia and especially Alzheimer’s disease.


2019 ◽  
Vol 484 (1) ◽  
pp. 104-108
Author(s):  
G. F. Makhaeva ◽  
E. F. Shevtsova ◽  
N. P. Boltneva ◽  
N. V. Kovaleva ◽  
E. V. Rudakova ◽  
...  

This study presents the synthesis of binary tetrohydro-γ-carbolines with ditriazol spacers of varying length, which exhibit anticholinesterase and antioxidant activity, as compared to the original Dimebon prototype. Anticholinesterase activity suggests the potential ability of the new compounds to block β-amyloid aggregation induced by anticholinesterase, making them promising candidates for further research preparations for the treatment of Alzheimer's disease. Particular attention should be paid to the conjugate with an intertriazol hexamethylene spacer, which can be regarded as the leading compound in this series.


2020 ◽  
Vol 18 (4) ◽  
pp. 354-359
Author(s):  
Shirin Tarbiat ◽  
Azize Simay Türütoğlu ◽  
Merve Ekingen

Alzheimer's disease is a neurodegenerative disorder characterized by memory loss and impairment of language. Alzheimer's disease is strongly associated with oxidative stress and impairment in the cholinergic pathway, which results in decreased levels of acetylcholine in certain areas of the brain. Hence, inhibition of acetylcholinesterase activity has been recognized as an acceptable treatment against Alzheimer's disease. Nature provides an array of bioactive compounds, which may protect against free radical damage and inhibit acetylcholinesterase activity. This study compares the in vitro antioxidant and anticholinesterase activities of hydroalcoholic extracts of five cultivars of Rosa Damascena Mill. petals (R. damascena 'Bulgarica', R. damascena 'Faik', R. damascena 'Iranica', R. damascena 'Complex-635' and R. damascena 'Complex-637') from Isparta, Turkey. The antioxidant activities of the hydroalcoholic extracts were tested for ferric ion reduction and DPPH radical scavenging activities. The anti-acetylcholinesterase activity was also evaluated. All rose cultivars showed a high potency for scavenging free radical and inhibiting acetylcholinesterase activity. There was a significant correlation between antioxidant and acetylcholinesterase inhibitory activity. Among cultivars, Complex-635 showed the highest inhibitory effect with an IC50 value of 3.92 µg/mL. Our results suggest that all these extracts may have the potential to treat Alzheimer's disease with Complex-635 showing more promise.


2020 ◽  
Vol 27 ◽  
Author(s):  
Reyaz Hassan Mir ◽  
Abdul Jalil Shah ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Potoo ◽  
Mohd. Akbar Dar ◽  
...  

: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder characterized by memory impairment, dementia, oxidative stress in elderly people. Currently, only a few drugs are available in the market with various adverse effects. So to develop new drugs with protective action against the disease, research is turning to the identification of plant products as a remedy. Natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Phytochemicals including Curcumin, Resveratrol, Quercetin, Huperzine-A, Rosmarinic acid, genistein, obovatol, and Oxyresvertarol were reported molecules for the treatment of AD. Several alkaloids such as galantamine, oridonin, glaucocalyxin B, tetrandrine, berberine, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in-vivo. In conclusion, natural products from plants represent interesting candidates for the treatment of AD. This review highlights the potential of specific compounds from natural products along with their synthetic derivatives to counteract AD in the CNS.


2019 ◽  
Vol 20 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Chi Zhang ◽  
Zhichun Gu ◽  
Long Shen ◽  
Xianyan Liu ◽  
Houwen Lin

Background: To deliver drugs to treat Alzheimer’s Disease (AD), nanoparticles should firstly penetrate through blood brain barrier, and then target neurons. Methods: Recently, we developed an Apo A-I and NL4 dual modified nanoparticle (ANNP) to deliver beta-amyloid converting enzyme 1 (BACE1) siRNA. Although promising in vitro results were obtained, the in vivo performance was not clear. Therefore, in this study, we further evaluated the in vivo neuroprotective effect and toxicity of the ANNP/siRNA. The ANNP/siRNA was 80.6 nm with good stability when incubated with serum. In vivo, the treatment with ANNP/siRNA significantly improves the spatial learning and memory of APP/PS1 double transgenic mice, as determined by mean escape latency, times of crossing the platform area during the 60 s swimming and the percentage of the distance in the target quadrant. Results and Conclusion: After the treatment, BACE1 RNA level of ANNP/siRNA group was greatly reduced, which contributed a good AD treatment outcome. Finally, after repeated administration, the ANNP/siRNA did not lead to significant change as observed by HE staining of main organs, suggesting the good biocompatibility of ANNP/siRNA. These results demonstrated that the ANNP was a good candidate for AD targeting siRNA delivery.


2019 ◽  
Vol 19 (8) ◽  
pp. 688-705
Author(s):  
Taibi Ben Hadda ◽  
Abdur Rauf ◽  
Hsaine Zgou ◽  
Fatma Sezer Senol ◽  
Ilkay Erdogan Orhan ◽  
...  

Background:Since deficit of acetylcholine has been evidenced in the Alzheimer’s disease (AD) patients, cholinesterase inhibitors are currently the most specified drug category for the remediation of AD.Method:In the present study, 16 compounds (1-16) with dicarbonyl skeletons have been synthesized and tested for their inhibitory potential in vitro against AChE and BChE using ELISA microtiter plate assays at 100 μg/mL. Since metal accumulation is related to AD, the compounds were also tested for their metal-chelation capacity.Results and Conclusion:All the investigated dicarbonyl compounds exerted none or lower than 30% inhibition against both cholinesterases, whereas compounds 2, 8 and 11 showed 37, 42, 41% of inhibition towards BChE, being the most active. The highest metal-chelation capacity was observed with compound 8 (53.58 ± 2.06%). POM and DFT analyses are in good harmonization with experimental data.


Sign in / Sign up

Export Citation Format

Share Document