scholarly journals EXPERIMENTAL STUDY ON PROPERTIES OF CONCRETE USING GROUND GRANULATED BLAST FURNACE SLAG AND COPPER SLAG AS A PARTIAL REPLACEMENT FOR CEMENT AND FINE AGGREGATE

2020 ◽  
Vol 44 (6) ◽  
pp. 433-439
Author(s):  
Vijayasarathy Rathanasalam ◽  
Jayabalan Perumalsami ◽  
Karthikeyan Jayakumar

This paper presents the properties of blended geopolymer concrete manufactured using fly ash and ultrafine Ground Granulated Blast Furnace Slag (UFGGBFS), along with the copper slag (CPS) as replacement of fine aggregate (crushed stone sand). Various parameters considered in this study include different sodium hydroxide concentrations (10M, 12M and 14M); 0.35 as alkaline liquid to binder ratio; 2.5 as sodium silicate to sodium hydroxide ratio and cured in ambient curing condition. Further, geopolymer concrete was manufactured using fly ash as the prime source material which is replaced with UFGGBFS (0%, 5%, 10% and 15%). Copper slag has been used as replacement of fine aggregate in this study. Properties of the fresh manufactured geopolymer concrete were studied by slump test. Compressive strength of the manufactured geopolymer concrete was tested and recorded after curing for 3, 7 and 28 days. Microstructure Characterization of Geopolymer concrete specimens was done by Scanning Electron Microscope (SEM) analysis. Experimental results revealed that the addition of UFGGBFS resulted in an increased strength performance of geopolymer concrete. Also, this study demonstrated that the strength of geopolymer concrete increased with an increase in sodium hydroxide concentration. SEM results revealed that the addition of UFGGBFS resulted in a dense structure.


Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 422
Author(s):  
Naraindas Bheel ◽  
Montasir Osman Ahmed Ali ◽  
Yue Liu ◽  
T. Tafsirojjaman ◽  
Paul Awoyera ◽  
...  

Cementitious and recycled materials that have the potential to improve various properties of concrete have attracted the attention of many researchers recently. Different types of cementitious and recycled materials seem to possess certain unique properties to change cement concrete. This experimental study aims to investigate the impact of ground granulated blast furnace slag (GGBFS) and corn cob ash (CCA) as a partial replacement material for Portland cement (PC) and fine aggregate (FA), respectively, on fresh and hardened concrete properties, as well as the embodied carbon of concrete. The concrete mix was blended with 5-20% of GGBFS and 10-40% of corn cob ash, both individually and combined. A total of 300 concrete specimens were made to achieve the targeted strength of 25 MPa at a 0.50 water/cement ratio and cured at 28 days. It is observed that the workability of fresh concrete is lowered as the dosages of GGBFS and CCA increase in the mixture. Moreover, the compressive and split tensile strengths are augmented by 10.94% and 9.15%, respectively, at 10% of GGBFS by the weight of PC at 28 days. Similarly, the compressive and split tensile strengths are augmented by 11.62% and 10.56%, respectively, at 30% of CCA by the weight of FA at 28 days. Moreover, the combined use of 10% of GGBFS as a cementitious ingredient along with 30% of fine aggregate replaced with CCA in concrete provides the highest compressive and splitting tensile strength, with 16.98% and 13.38% at 28 days, respectively. Furthermore, the density and water absorption of concrete were reduced with increasing dosages of GGBFS and FA in concrete at 28 days. In addition, the embodied carbon and energy were also reduced as the replacement content of GGBFS along with CCA increased in concrete. It is concluded that 10% of GGBFS and 30% of CCA are the optimum percentages for structural applications to reduce the use of cement as well as the cost of the project.


2014 ◽  
Vol 984-985 ◽  
pp. 698-706 ◽  
Author(s):  
P. Brightson ◽  
M. Premanand ◽  
M.S. Ravikumar

Ground-granulated blast-furnace slag (GGBS) is obtained as waste product from the Iron industries, Ground-granulated blast-furnace slag (GGBS or GGBFS) is obtained by quenching molten iron slag (a by-product of iron and steel-making) from a blast furnace in water or steam, to produce a glassy, granular product that is then dried and ground into a fine powder. Investigations were carried out to explore the possibility of using GGBS as a replacement of sand in concrete mixtures. This paper presents the results of study undertaken to investigate the feasibility of using GGBS as fine aggregate in concrete. The effects of replacing fine aggregates by GGBS on the compressive strength of cubes, split tensile strength of cylinders and flexural strength of beams are evaluated in this study. Five test groups were constituted with the replacement percentages of 0%, 20%, 30%, 40%, and 50% .The results showed the effect of GGBS on RCC concrete elements has a considerable amount of increase in the compressive, split tensile and flexural strength characteristics. Leaching studies revealed that GGBS does not leach heavy metals like Pb, Zn, Cr, Ni, Mo etc and also indicates that the leaching of heavy metals was well below the toxicity limits even under aggressive conditions.


Author(s):  
Pratap Singh ◽  
Ramanuj Jaldhari

The aim of this study is to evaluate the performance of  M35 grade of concrete in addition of Ground-granulated blast-furnace slag and partial replacement of cement by glass fiber. Ground-granulated blast-furnace slag is pozzolanic materials that can be utilized to produce highly durable concrete composites. In this study Ground-granulated blast-furnace slag has been used to OPC which varies from 5% to 10% at interval of 2.5% by total weight of OPC and similarly partial replacement of OPC (43 grade) by glass fiber which varies from 0% to 0.4% at interval of 0.1% by total weight of OPC. All mixes (trial mix, control mix and variation mix) were prepared for M35 grade of concrete. This study investigates the performance of concrete mixture in terms of slump, compressive strength for 7days and 28 days, Flexural strength of beam 28 days and Splitting tensile strength of Cylinder for 28 days respectively.


Sign in / Sign up

Export Citation Format

Share Document