scholarly journals Chemical Composition, Anti-Nutritional Factors and Pasting Properties of Cassava-African Yam Bean Flour Blends for Noodle Preparation

Author(s):  
Ghaniyah Odunola Ajibola ◽  
Abiodun Adekunle Olapade

Noodle consumption has been increasing in Nigeria as a result of rapid urbanization, increase in population growth, and desire for convenience food. Noodles are produced from wheat our which is not grown in Nigeria. In order to reduce wheat imports and improve utilization of local crops, various options have been developed to replace wheat flour partially or wholly in noodle production. This study was aimed at optimizing the level of major ingredients to obtain the best flour blend for noodle preparation with optimum nutritional quality. Pro-vitamin A cassava roots (Manihot esculenta Crantz) and African yam bean seeds (AYB) (Sphenostylis stenocarpa) were processed into ours. The ranges of these flours, based on preliminary findings, were computed into a central composite design of Response Surface Methodology (RSM) to obtain 13 flour blends with five central points. The chemical compositions, anti-nutritional factors, and pasting properties of these flour blends were analyzed and measured. By maximizing total β-carotene, protein content, and minimizing fat content, the predicted model indicated the optimum blend of 70.52% cassava flour to 29.48% AYB flour. The best our blend sample of 69.23% cassava our to 30.77% AYB flour gave the actual value of total β-carotene 6.76 μg/g, with proximate analysis composition of protein 6.17%, fat 0.82%, moisture 8.95%, ash 1.77%, crude fiber 5.09%, and carbohydrate 82.30%. The anti-nutritional factors of the best blend were 8.21 mg HCNeqv/kg, 1.69 mg phytate/g and 0.37 mg tannin/g.

2020 ◽  
Vol 39 (01) ◽  
Author(s):  
Anosike Francis Chidi ◽  
Nwagu Kingsley Ekene ◽  
Ekwu Francis ◽  
Nweke Friday Nwalo ◽  
Nwoba Sunday Theophilus ◽  
...  

Studies were conducted on the chemical, functional, pasting properties of the flour blends and sensory properties of ukpo oka formulated from of maize- African yam bean flour (AYBF) in order to improve the nutritional content of maize and encourage a wider utilization of the legume AYB. Supplementation of maize and African yam flour was done at 100:0, 50:50, 80:20, 60:40 and 20:80 maize: African yam bean flour, respectively. Proximate composition, functional properties, pasting properties of the flour blends was determined and sensory attributes of the products were also evaluated. The result showed that supplementation of maize with African yam bean flour significantly increased the protein, ash and fiber content of the flour blends with values ranging from 3.91 - 11.08%, 2.90 - 6.60%, 0.67 - 1.82% for protein, ash and fiber contents respectively. The protein, ash and fiber contents increased with addition of African yam bean flour while carbohydrate content of maize- African yam bean blends decreased with increase in the level of African yam bean. The values for functional properties ranged from 0.72 – 0.82g/ml, 99.33 – 323.33%, 9.01 – 19.65%, 690.00 - 978.33%, 0.67 – 1.13%, 0.484 – 1.038% for bulk density, foaming capacity, emulsion capacity, swelling capacity, water absorption capacity and oil absorption capacity respectively. Values for pasting properties of the flour blends expressed in rapid visco unit (RVU) ranges from 129.25 – 209.40, 22.55 – 67.93, 60.21 – 124.62 , 145.25 – 247.67 , 83.37 – 84.56 , 5.47 – 5.97 and 87.19 – 141.35 for peak viscosity, break down viscosity, set back viscosity, final viscosity, pasting temperature, peak time and trough respectively. Set back viscosity and final viscosity increased with increase in the levels of African yam bean while break down viscosity decrease with the increase in the levels of African yam bean. The products were highly rated in all sensory attributes evaluated however aroma decreases with increase in the levels of AYBF. Product made from flour blend 50:50 was the most preferred in terms of general acceptability.


2019 ◽  
Vol 11 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Folasade Maria Makinde ◽  
Ayobami Opeyemi Eyitayo

The feasibility of partially replacing wheat flour with coconut flour in baked products was investigated. Matured coconut (Cocos nucifera) endocarp was grated for the extraction of milk, dried, milled,and pulverized. Five blends of composite flour were prepared by combining wheat flour with 10% to 50% of partially defatted coconut flour,respectively. The 100% wheat flour served as control. The samples were analysed for proximate, mineral, functional,and pasting properties using standard procedures. The proximate analysis indicated 5.52 % moisture, 23.6% protein, 11.14% fibre, 5.4% fat, 5.21% ash,and 49.1% carbohydrate for coconut flour. The ranges of the proximate composition forthe flour blends were:moisture (4.79-5.55%), protein (14.9 -19.1%), fibre (0.44 -5.12%), fat (2.9 -5.3%), ash (0.68-2.13%), carbohydrate (62.7-76.2%),and energy (315.26-335.28 kCal). The values for moisture, protein, fat, fibre,and ash increased with the increasing levels of coconut substitution,except for carbohydrate and energy contents. There were significant differences (p≤0.05) in calcium, magnesium, potassium, phosphorus, iron,and zinc concentrations of the samples. The range of values obtained for these parameters was1.32-2.59 mg/kg, 2.60-3.83 mg/kg, 12.10-16.89 mg/kg, 12.40-18.50 mg/kg,0.50-1.22 mg/kg and 0.30-1.23 mg/kg, respectively. The ranges of functional properties were:loosed bulk density (0.28-0.49 g/mL),packed bulk density (0.44-0.75 g/mL), pH (5.77-6.57), swelling capacity (3.89-6.56%), water absorption capacity (0.89-3.97 ml/g),oil absorption capacity (1.26-3.20 ml/g),and gelation (12.0-18.0%). The pasting characteristics showed significant differences betweenthe100% wheat flour and coconut substituted samples. The results revealed modifications in nutritional, functional,and pasting properties in blends containing fractions of partially defatted coconut flour,which suggeststheir application in diverse food products.


2021 ◽  
pp. 23-35
Author(s):  
J. N. Okafor ◽  
J. N. Ishiwu ◽  
J. E. Obiegbuna

The aim of this research was to produce acceptable ‘fufu’ from a mixture of sorghum, millet, and African yam bean flours that will have a moderate carbohydrate and protein content with most optimized texture. The functional and sensory properties of flour blends produced from Sorghum, Millet and African yam bean was studied. Sorghum, Millet and African yam bean were processed into flour and mixed at different ratios to obtain composite flours. The flour formulations obtained were analyzed for water absorption capacity, bulk density, least gelation concentration , and viscosity .The  water absorption capacity ranged from 1.00 to 3.00,  the bulk density ranged from 0.56 to 0.82;the least gelation concentration ranged from 5.77 to 6.87,while the viscosity ranged from 0.956 to 9.30.Also proximate composition of the individual flours before formulation  was analyzed, it ranged from 6.13 to 8.46 moisture, 2.00 to 4.67 ash, 0.17 to 8.00 fiber,5.47 to 8.61 fat, 7.57 to 21.84 protein, 58.34 to 69.27 carbohydrate.The sensory values ranged from 5.60 to 6.45 for taste; 4.25 to 6.85  for colour; 5.15 to 6.80 for texture; 3.85 to 5.70 for aroma; 5.45 to 6.45 acceptability. Sample 10 (with the ratio of 40:70:20) had the highest rating for general acceptability. It was observed that sample 1(with the ratio of 60:50:60) had the lowest rating in taste and aroma. The mixture components that could produce optimum texture was determined through optimization plot. This work has demonstrated that acceptable ‘fufu’ with moderate protein and carbohydrate could be successfully produced using composite flours of sorghum, millet and African yam bean.


2014 ◽  
Vol 3 (2) ◽  
Author(s):  
Abiodun Adekunle Olapade ◽  
Mary Abimbola Adeyemo

Cassava (Manihot esculenta Crantz) and cowpea (Vigna unguiculata L. Walp) were processed into flours and used to substitute wheat flour for preparation of cookies. The chemical, including proximate composition and anti-nutritional factors, and functional and pasting properties of the blends were determined. Cookies were produced from the blends with 100% wheat flour as a control. The anti-nutritional factors, physical properties and organoleptic attributes of the cookies were evaluated. An increase in the level of cassava flour substitution resulted in a decrease in the protein content of the composite flour. However, addition of cowpea flour resulted in an increase in the protein content. There were significant (p<0.05) reductions in the studied anti-nutritional factors after baking. Cookies from composite flours were not significantly (p>0.05) different from the control in overall acceptability. This indicates the feasibility of producing nutritious cookies with desirable organoleptic qualities from cassava, wheat and cowpea composite flour.


Author(s):  
H. T. Olaleye ◽  
T. O. Oresanya ◽  
E. O. Temituro

Prevalence of Malnutrition continues to be a plague ravaging children all over the world especially in developing countries such as Nigeria. Development of inexpensive, nutritious and readily available foods can mitigate against the challenges of malnutrition. Objective: To investigate the effect of different formulations of sorghum, mung beans and orange fleshed sweet potato flour blends on the proximate, functional, pasting properties and the sensory attributes of the weaning food blends. Methodology: Weaning foods were formulated from Sorghum grains (S), Mung beans (M) and (O) Orange fleshed sweet potato in ratios 40:45:15, 40:30:30, 25:35:45, 25:45:30 and 55:30:15 respectively. The blends of the weaning food were analyzed for the proximate, functional, pasting properties and sensory evaluation using standard methods. Data obtained were subjected to analysis of variance and means were separated using Duncan’s multiple range test p<0.05. Results: The proximate analysis of the blends had moisture content (8.15-9.58%), crude fat (1.47-2.76%), crude protein (14.00-18.04%), crude fibre (0.34-0.82%), total ash (1.86-2.52%) and carbohydrate (68.02-73.62%). Functional analysis: Bulk density 0.55-0.65 (g/cm3), swelling power (4.64-7.13%), solubility index (4.00-16.50%), water absorption capacity 1.58 (g/gcm3). Pasting: Peak viscosity: (87-214), Break-down viscosity (64-142), Trough viscosity (16-72), Final viscosity (50-175), Set back (28-103), Peak time (4.4.6 min), Pasting temperature (70.83°C). Blend S:M:O- 40:30:30 was rated most acceptable for all the parameters accessed. Conclusion: The blends of the weaning food showed that it can be a good source of carbohydrate, crude protein, minerals with low bulkiness and good reconstitution properties which can be used to solve malnutrition challenges in Nigeria.


2021 ◽  
pp. 63-77
Author(s):  
T. A. Dendegh ◽  
B. M. Yelmi ◽  
R. A. Dendegh

Quality attributes of stiff porridges prepared from Pearl millet and African Yam Bean (AYB) flour blends were studied. Various ratios such as A (100% pearl millet), B (90:10), C (80:20), D (70:30), E (60:40) and F (50:50) of pearl millet and African Yam Bean (AYB) composite flours were mixed and analyzed for functional, proximate composition, mineral elements and sensory properties. The blends were then prepared into stiff porridges for sensory evaluation using a 20-man sensory panel. Substitution of African Yam Bean with Pearl Millet led to increases in moisture (24.29 to 37.50%) protein (10.90 to 19.70%), fibre (1.30 to 2.00%), Ash (0.43 to 0.55%) and fat (3.80 to 5.20%) while the carbohydrate content of the blends decreased (from 62.07 to 39.85%) respectively. Functional properties such as bulk density decreased with increase in AYB from (1.80 to 0.72 g/ml, swelling index also increases from 0.75 to 0.56 g/ml, water absorption capacity decreases from 2.20 to 2.64 g/ml) and Least Gelation Concentration (6%). The sensory attributes of stiff porridges were not adversely affected by African Yam Bean flour. Therefore, it should be possible to incorporate up to 50% of legumes such as African Yam Bean with Pearl Millet in the preparation of stiff porridges.


2018 ◽  
Vol 3 (3) ◽  
pp. 31-40 ◽  
Author(s):  
Akinjide O. Akinsola ◽  
◽  
Victoria O. Segilola ◽  
Etuonu S. Oloso ◽  
Oludunke J. Durojaiye ◽  
...  

Author(s):  
C. E. Kalu ◽  
I. C. Alaka ◽  
F. C. Ekwu

Pasting properties of flour blends from water yam, yellow maize and African yam bean were investigated in this study. Peak viscosity ranged from 133.50 to 166.25RVU, Trough viscosity ranged from 85.08 to 135.20RVU, break down viscosity ranged from 28.17 to 50.58RVU, final viscosity ranged from 5.05 to 5.49 min and pasting temperature ranged from 80.25 84.15oC. Addition of yellow maize and African yam bean affected (p<0.05) the peak viscosity, trough viscosity, break down viscosity, final viscosity, and setback viscosity in different trends. However, peak time and peak temperature of the flour sample were not statically (p<0.05) affected by the blend ratio in this study. Amongst the flour samples investigated in this study, flour sample DIN (60%WY:10%YM:30%AYB) showed promise for value added products such as noodles among other flour products. They flour sample adjusted to be the best sample could be used as a good replacement for wheat flour and when achieved, it will reduce the cost of importation.


Sign in / Sign up

Export Citation Format

Share Document