scholarly journals A database for efficient storage and management of multi panel SNP data

2013 ◽  
Vol 56 (1) ◽  
pp. 1023-1027
Author(s):  
E. Groeneveld ◽  
C. V. C. Truong

Abstract. The fast development of high throughput genotyping has opened up new possibilities in genetics while at the same time producing immense data handling issues. A system design and proof of concept implementation are presented which provides efficient data storage and manipulation of single nucleotide polymorphism (SNP) genotypes in a relational database. A new strategy using SNP and individual selection vectors allows us to view SNP data as matrices or sets. These genotype sets provide an easy way to handle original and derived data, the latter at basically no storage costs. Due to its vector based database storage, data imports and exports are much faster than those of other SNP databases. In the proof of concept implementation, the compressed storage scheme reduces disk space requirements by a factor of around 300. Furthermore, this design scales linearly with number of individuals and SNPs involved. The procedure supports panels of different sizes. This allows a straight forward management of different panel sizes in the same population as it occurs in animal breeding programs when higher density panels replace previous lower density versions.

2021 ◽  
Author(s):  
Ping-Ru Su ◽  
Tao Wang ◽  
Pan-Pan Zhou ◽  
Xiao-Xi Yang ◽  
Xiao-Xia Feng ◽  
...  

Abstract Design and engineering of highly efficient emitting materials with assembly-induced luminescence, such as room temperature phosphorescence (RTP) and aggregation-induced emission (AIE), have stimulated extensive efforts. Here, we propose a new strategy to obtain size-controlled Eu3+-complex nanoparticles (Eu-NPs) with self-assembly induced luminescence (SAIL) characteristics without encapsulation or hybridization. Compared with previous RTP or AIE materials, the SAIL phenomena of increased luminescence intensity and lifetime in aqueous solution for the proposed Eu-NPs are due to the combined effect of self-assembly in confining the molecular motion and shielding the water quenching. As a proof of concept, we also show that this system can be further applied in bioimaging, temperature measurement and HClO sensing. The SAIL activity of the rare-earth (RE) system proposed here offers a further step forward on the roadmap for the development of RE light conversion systems and their integration in bioimaging and therapy applications.


2021 ◽  
Vol 11 (2) ◽  
pp. 807
Author(s):  
Llanos Tobarra ◽  
Alejandro Utrilla ◽  
Antonio Robles-Gómez ◽  
Rafael Pastor-Vargas ◽  
Roberto Hernández

The employment of modern technologies is widespread in our society, so the inclusion of practical activities for education has become essential and useful at the same time. These activities are more noticeable in Engineering, in areas such as cybersecurity, data science, artificial intelligence, etc. Additionally, these activities acquire even more relevance with a distance education methodology, as our case is. The inclusion of these practical activities has clear advantages, such as (1) promoting critical thinking and (2) improving students’ abilities and skills for their professional careers. There are several options, such as the use of remote and virtual laboratories, virtual reality and game-based platforms, among others. This work addresses the development of a new cloud game-based educational platform, which defines a modular and flexible architecture (using light containers). This architecture provides interactive and monitoring services and data storage in a transparent way. The platform uses gamification to integrate the game as part of the instructional process. The CyberScratch project is a particular implementation of this architecture focused on cybersecurity game-based activities. The data privacy management is a critical issue for these kinds of platforms, so the architecture is designed with this feature integrated in the platform components. To achieve this goal, we first focus on all the privacy aspects for the data generated by our cloud game-based platform, by considering the European legal context for data privacy following GDPR and ISO/IEC TR 20748-1:2016 recommendations for Learning Analytics (LA). Our second objective is to provide implementation guidelines for efficient data privacy management for our cloud game-based educative platform. All these contributions are not found in current related works. The CyberScratch project, which was approved by UNED for the year 2020, considers using the xAPI standard for data handling and services for the game editor, game engine and game monitor modules of CyberScratch. Therefore, apart from considering GDPR privacy and LA recommendations, our cloud game-based architecture covers all phases from game creation to the final users’ interactions with the game.


Author(s):  
Jiangmao Zheng ◽  
Jian Zhao ◽  
Ju Li ◽  
Changan Zhan ◽  
Tao Wang

2018 ◽  
Vol 60 (5-6) ◽  
pp. 253-261
Author(s):  
Uwe Roth ◽  
Theophane Ngne Djoua

Abstract In this article, we propose an architecture that allows to exchange messages or data via a blockchain solution, while keeping the business process independent from the concrete blockchain. The project is the consequence of a need to have fast development of a blockchain based proof of concept that shows the feasibility of a business process, while knowing that in a future step the underlying blockchain solution has to be replaced for reasons of licensing or maximal data throughput. This is done by providing an architecture on base of layers, similar to the OSI-model, and encapsulates the used blockchain within a wrapper layer that covers all blockchain specific properties and only provides a transparent view on the reading or writing from and to the blockchain. The higher layers re-implement point-to-point communication and introduce confidentiality by the use of encryption techniques. The architecture has been tested and proven by implementing two different blockchain solutions that are shielded by specific wrapper layer implementations. This wrapper layer is responsible for the fragmentation of the sent data and their encapsulation into the concrete blockchain solution. The reconstruction of the data takes care of the data fragments being sent potentially out of order or being incomplete. A payload layer is introduced to provide point-to-point communication and to embed the main message inside a message structure. In collaboration with underlying layer it identifies for which message one is not the addressee and allow the underling layer to stop collecting unnecessary data. A crypto-layer finally provides ways of encrypting messages for one or many recipients. Having fixed layers not only allows to replace the underlying blockchain solution but also to extend or replace the other layers in case new security features or optimized protocols need to embedded. The proposed solution does not allow to use specific features like smart contracts and only provides undeniable tamper-proofed existence of a sent message.


2018 ◽  
Vol 30 (4) ◽  
pp. 14-31 ◽  
Author(s):  
Suyel Namasudra ◽  
Pinki Roy

This article describes how nowadays, cloud computing is one of the advanced areas of Information Technology (IT) sector. Since there are many hackers and malicious users on the internet, it is very important to secure the confidentiality of data in the cloud environment. In recent years, access control has emerged as a challenging issue of cloud computing. Access control method allows data accessing of an authorized user. Existing access control schemes mainly focus on the confidentiality of the data storage. In this article, a novel access control scheme has been proposed for efficient data accessing. The proposed scheme allows reducing the searching cost and accessing time, while providing the data to the user. It also maintains the security of the user's confidential data.


2016 ◽  
Vol 27 (3) ◽  
pp. e1932 ◽  
Author(s):  
Konrad Karolewicz ◽  
Andrzej Beben ◽  
Jordi Mongay Batalla ◽  
George Mastorakis ◽  
Constandinos X. Mavromoustakis

Author(s):  
Nikos Karacapilidis

This case reports on the implementation of an open information management system that integrated modern information technology approaches to address the needs of a Greek medium-scale clothing producer towards heading to e-business. The system was able to interoperate with the companys legacy ERP system and automated intra-business, business-to-business and business-to-customer processes. The overall approach was designed around open standards for data exchange and integrated as a set of off-the-shelf tools that assured a robust, scalable and fast development cycle. Particular attention was paid to the appropriate synchronization of the internal and external work and data flows, the improvement of supply chain management, the reduction of transactions costs through the appropriate process automation, the reduction of errors occurring during the traditional handling of business documents, the reduction of the companys inventory levels, and, finally, the establishment of a cooperative environment between the enterprise and its customers and suppliers.


Sign in / Sign up

Export Citation Format

Share Document