CLEAR Cleat: A Proof-of-Concept Trial of an Aerobic Activity Facilitator to Reduce Plantar Forefoot Pressures and Their Potential in Those with Foot Ulcers

2008 ◽  
Vol 98 (4) ◽  
pp. 261-267 ◽  
Author(s):  
Erin E. Klein ◽  
Ryan T. Crews ◽  
Stephanie C. Wu ◽  
James S. Wrobel ◽  
David G. Armstrong

Background: Exercise has not been studied extensively in persons with active neuropathic diabetic foot wounds, primarily because a device does not exist that allows patients to exercise while sufficiently off-loading pressure at the ulcer site. The purpose of this project was to demonstrate a device that reduces cycling plantar forefoot pressure. Methods: Ten healthy participants rode a recumbent bicycle under three cycling conditions. While the left foot interaction remained constant with a standard gym shoe and pedal, the right foot was exposed to a control condition with standard gym shoe and pedal, gym shoe and specialized cleat, and gym shoe with an off-loading insole and specialized cleat. Pressure and contact area of the plantar aspect of the feet were recorded for a 10-sec interval once during each minute of each condition’s 7-min trial. Results: The off-loading insole and specialized cleat condition yielded significantly lower (P < .01) peak pressure, contact area, and pressure–time integral values in the forefoot than the specialized cleat condition with gym shoe, which yielded significantly lower values (P < .01) than the standard gym shoe and pedal. Conclusion: Modifications to footwear may alter plantar forefoot pressures, contact area, and pressure–time integrals while cycling. The CLEAR Cleat could play a significant role in the facilitation of fitness in patients with (or at high risk for) neuropathic wounds. (J Am Podiatr Med Assoc 98(4): 261–267, 2008)

2018 ◽  
Vol 108 (5) ◽  
pp. 355-361 ◽  
Author(s):  
Helen Branthwaite ◽  
Gemma Grabtree ◽  
Nachiappan Chockalingam ◽  
Andrew Greenhalgh

Background: Weakness of the toe flexor muscles has been attributed to the development of toe pathologies, and it responds well in the clinic to toe grip exercises. However, it is unknown whether exercising the toe flexor muscles improves the ability to grip and alter function. The aim of this study was to assess the effect of toe flexor exercises on apical plantar pressure, as a measure of grip, while seated and during gait. Methods: Twenty-three individuals with no known toe pathologies were recruited. Static peak pressure, time spent at peak pressure, and pressure-time integral while seated, as well as dynamic forefoot maximal force, contact area, and percentage contact time, were recorded before and after exercise. Toe grip exercises with a therapy ball were completed daily for 6 weeks. Results: Static peak pressure significantly increased after exercise on the apex of the second and third digits, as did the pressure-time integral. Dynamic peak force and contact area did not alter after exercise around the metatarsals and toes, yet percentage contact time significantly increased for each metatarsal after completing daily toe grip exercises. Conclusions: Exercises to improve the grip ability of the toes increased the static peak pressure on the apex of the second and third digits as well as the percentage contact time of the metatarsals during gait. The ability to increase apical peak pressure and contact time after exercises could assist in improving forefoot stability and gait efficiency and in reducing toe pathology progression.


2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Banu Ünver ◽  
Nilgün Bek

Background Flexible flatfoot disturbs the load distribution of the foot. Various external supports are used to prevent abnormal plantar loading in flexible flatfoot. However, few studies have compared the effects of different external supports on plantar loading in flexible flatfoot. The objective of this study was to investigate the effects of elastic taping, nonelastic taping, and custom-made foot orthoses on plantar pressure-time integral and contact area in flexible flatfoot. Methods Twenty-seven participants with flexible flatfoot underwent dynamic pedobarographic analysis while barefoot and with elastic tape, nonelastic tape, and custom-made foot orthoses. Results Pressure-time integral percentage was higher with foot orthoses than in the barefoot and taping conditions in the midfoot (P < .001) and was lower with foot orthoses than in barefoot in the right forefoot (P < .05). Pressure-time integral values were lower with foot orthoses in the second, third, and fourth metatarsals and the lateral heel (P < .05). With foot orthoses, contact area values were higher in the toes; second, third, and fourth metatarsi; midfoot; and heel compared with the other conditions (P < .05). Pressure-time integral in the right lateral heel and contact area in the left fourth metatarsal increased with nonelastic taping versus barefoot (P < .05). Conclusions Foot orthoses are more effective in providing dynamic pressure redistribution in flexible flatfoot. Although nonelastic taping has some effects, taping methods may be insufficient in altering the measured pedobarographic values in this condition.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8551 ◽  
Author(s):  
Lovro Štefan ◽  
Mario Kasović ◽  
Martin Zvonar

Background The main purpose of the study was to determine whether lower levels of physical activity were associated with higher plantar pressure generated under each foot. Methods In this cross-sectional study, we recruited 641 children aged 6–14 years (agemean ± SD = 9.7  ± 2.4 years; heightmean ± SD = 143.6  ± 15.3 cm, weightmean ± SD = 37.6  ± 13.4 kg; body-mass indexmean ± SD = 17.6  ± 3.2 kg/m2; 44.2% girls). We used EMED –XL pressure platform to measure force time integral, pressure-time integral, contact-time and contact area, peak plantar pressure and mean plantar pressure of the right and the left foot during the gait analysis. The level of physical activity was measured by using The Physical Activity Questionnaire for Older Children (PAQ–C). The associations were calculated by using generalized estimating equations with linear regression models. Results Lower levels of physical activity were associated with higher force- and pressure-time integrals, longer contact time and higher peak and mean plantar pressures in both feet. Conclusion Our study shows that the level of physical activity is strongly and inversely associated with plantar pressure in a sample of 6–14 year olds.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12481
Author(s):  
Yuqi He ◽  
Dong Sun ◽  
Xiaoyi Yang ◽  
Gusztáv Fekete ◽  
Julien S. Baker ◽  
...  

Background Biomechanical footwork research during table tennis performance has been the subject of much interest players and exercise scientists. The purpose of this study was to investigate the lower limb kinetic characteristics of the chasse step and one step footwork during stroke play using traditional discrete analysis and one-dimensional statistical parameter mapping. Methods Twelve national level 1 table tennis players (Height: 172 ± 3.80 cm, Weight: 69 ± 6.22 kg, Age: 22 ± 1.66 years, Experience: 11 ± 1.71 year) from Ningbo University volunteered to participate in the study. The kinetic data of the dominant leg during the chasse step and one step backward phase (BP) and forward phase (FP) was recorded by instrumented insole systems and a force platform. Paired sample T tests were used to analyze maximum plantar force, peak pressure of each plantar region, the force time integral and the pressure time integral. For SPM analysis, the plantar force time series curves were marked as a 100% process. A paired-samples T-test in MATLAB was used to analyze differences in plantar force. Results One step produced a greater plantar force than the chasse step during 6.92–11.22% BP (P = 0.039). The chasse step produced a greater plantar force than one step during 53.47–99.01% BP (P < 0.001). During the FP, the chasse step showed a greater plantar force than the one step in 21.06–84.06% (P < 0.001). The one step produced a higher maximum plantar force in the BP (P = 0.032) and a lower maximum plantar force in the FP (P = 0) compared with the chasse step. The one step produced greater peak pressure in the medial rearfoot (P = 0) , lateral rearfoot (P = 0) and lateral forefoot (P = 0.042) regions than the chasse step during BP. In FP, the chasse step showed a greater peak pressure in the Toe (P = 0) than the one step. The one step had a lower force time integral (P = 0) and greater pressure time integral (P = 0) than the chasse step in BP, and the chasse step produced a greater force time integral (P = 0) and pressure time integral (P = 0.001) than the one step in the FP. Conclusion The findings indicate that athletes can enhance plantarflexion function resulting in greater weight transfer, facilitating a greater momentum during the 21.06–84.06% of FP. This is in addition to reducing the load on the dominant leg during landing by utilizing a buffering strategy. Further to this, consideration is needed to enhance the cushioning capacity of the sole heel and the stiffness of the toe area.


2018 ◽  
Vol 39 (7) ◽  
pp. 829-835 ◽  
Author(s):  
Reza Naraghi ◽  
Linda Slack-Smith ◽  
Alan Bryant

Background: The purpose of this research was to see if there were any differences in peak pressure, contact time, pressure-time integrals, and geometric variables such as forefoot width, foot length, coefficient of spreading, and arch index between subjects with Morton’s neuroma (MN) and control subjects. Methods: Dynamic peak plantar pressure, contact time, pressure-time integral, and geometric data were extracted using the EMED-X platform in 52 subjects with MN and 31 control subjects. Differences in peak pressure, contact time, pressure-time integral, and geometric data between participants with and those without MN were determined using independent-samples t tests. There were no significant differences in age, weight, height, and body mass index between patients with MN and control subjects. Results: There were no significant differences in the peak pressures of all masked areas and pressure-time integrals under metatarsal 2 to 4 heads between patients with MN and control subjects. In addition, no significant differences were observed between patients with MN and control subjects in geometric measurements of forefoot length, width, coefficient of spreading, foot progression angle, and arch index. Conclusion: No relationship was found in this study between peak pressure, contact time, and pressure-time integral under the metatarsal heads, forefoot width, foot length, coefficient of spreading, and foot progression angle in a symptomatic MN group compared with a control group. The need to perform osteotomies to treat MN not associated with other lesser metatarsal phalangeal joint pathologies is questionable. Level of Evidence: Level III, Case-Control Study


1999 ◽  
Vol 89 (10) ◽  
pp. 495-501 ◽  
Author(s):  
TG McPoil ◽  
MW Cornwall ◽  
L Dupuis ◽  
M Cornwell

The number of trials required to obtain a reliable representation of the plantar pressure pattern is an important factor in the assessment of people with insensate feet or the use of plantar pressure data as a basis for fabrication of foot orthoses. Traditionally, the midgait method has been used for the collection of pressure data, but the large number of walking trials required by this method can increase the risk of injury to the plantar surface of the insensate foot. As a result, the two-step method of plantar pressure data collection has been advocated. The purpose of this investigation was to determine the degree of variability in regional plantar pressure measurements using the midgait and two-step methods of data collection. Plantar pressure data were collected from ten volunteers (five men and five women) between the ages of 20 and 35 years in 20 trials using both data-collection protocols. The results of the study indicate that three to five walking trials are needed to obtain reliable regional peak pressure and pressure-time integral values when the two-step data-collection protocol is used. Although either method can be used for pressure data collection, one method should be used consistently when repeated assessments are required.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8186
Author(s):  
Yang Song ◽  
Meizi Wang ◽  
Julien Steven Baker ◽  
Yaodong Gu

Background Although the postural instability accompanying bilateral vestibular loss in human and quadrupeds during lateral head movements are well-known, it is still unclear whether or not lateral head turns would indeed activate the postural control system to maintain balance. This study aimed to examine the kinetic parameters in freely standing intact cats during head movements in order to further answer the above question. Methods Six intact cats were trained to stand, unrestrained on a force plate and perform voluntary head movements to the left and right positions in response to visual cues. Each trial was divided into two phases, quiet standing with the cat’s head maintaining a straight forward and lateral head position after voluntary head movements. Kinetic parameters including peak pressure and contact area under each limb as well as center of pressure (COP) displacements of the whole body were measured. Results Compared to the neutral head position, peak pressure and contact area of the left head position were significantly smaller for the left forelimb while greatly larger for the right forelimb. An exact opposite case of peak pressure and contact area in the forelimbs was found between the right and neutral head positions. In addition, the COP displacements altered oppositely to the head movements, and presented a significantly right shift in the left position and a significantly left shift in the right position. Conclusion These results demonstrate that the lateral displacement of the head in standing intact cats does activate the postural adjustment to maintain balance, which is consistent with the concept that vestibular input can contribute to postural balance during voluntary head turns.


2015 ◽  
Vol 15 (01) ◽  
pp. 1550014 ◽  
Author(s):  
QICHANG MEI ◽  
NENG FENG ◽  
XUEJUN REN ◽  
MAK LAKE ◽  
YAODONG GU

Foot loading patterns can be changed by using different unstable sole structures, detailed quantification of which is of great significance for research and technological development in falling prevention and lower limb disorders rehabilitation. In this study, unstable soles constructions are adjusted through unstable elements in heel and medial, neutral and lateral forefoot and the foot loading patterns are comparatively studied. A total of 22 healthy male subjects participated in this test. Subjects are asked to walk over a 12 m walkway with control shoes and experimental shoes in self-adapted speed. Significant peak pressure, contact area and pressure-time integral differences in middle foot are found between control shoes and experimental shoes. In addition, peak pressure and pressure-time integral are found to increase significantly with unstable elements adding to center forefoot. The results showed that adjusting the unstable elements in coronal plane of forefoot could effectively alter the distribution of plantar pressure, this could potentially offer a mechanism for preventing falling of elderly and rehabilitation of lower extremity malfunctions. This study also demonstrates a novel concept that unstable element could be effectively adjusted in terms of position to meet different functional requirement.


2011 ◽  
Vol 32 (11) ◽  
pp. 1075-1080 ◽  
Author(s):  
Heather Schmidt ◽  
Lindsay D. Sauer ◽  
Sae Yong Lee ◽  
Susan Saliba ◽  
Jay Hertel

Background: Previous plantar pressure research found increased loads and slower loading response on the lateral aspect of the foot during gait with chronic ankle instability compared to healthy controls. The studies had subjects walking barefoot over a pressure mat and results have not been confirmed with an in-shoe plantar pressure system. Our purpose was to report in-shoe plantar pressure measures for chronic ankle instability subjects compared to healthy controls. Methods: Forty-nine subjects volunteered (25 healthy controls, 24 chronic ankle instability) for this case-control study. Subjects jogged continuously on a treadmill at 2.68 m/s (6.0 mph) while three trials of ten consecutive steps were recorded. Peak pressure, time-to-peak pressure, pressure-time integral, maximum force, time-to-maximum force, and force-time integral were assessed in nine regions of the foot with the Pedar-x in-shoe plantar pressure system (Novel, Munich, Germany). Results: Chronic ankle instability subjects demonstrated a slower loading response in the lateral rearfoot indicated by a longer time-to-peak pressure (16.5% ± 10.1, p = 0.001) and time-to-maximum force (16.8% ± 11.3, p = 0.001) compared to controls (6.5% ± 3.7 and 6.6% ± 5.5, respectively). In the lateral midfoot, ankle instability subjects demonstrated significantly greater maximum force (318.8 N ± 174.5, p = 0.008) and peak pressure (211.4 kPa ± 57.7, p = 0.008) compared to controls (191.6 N ± 74.5 and 161.3 kPa ± 54.7). Additionally, ankle instability subjects demonstrated significantly higher force-time integral (44.1 N/s ± 27.3, p = 0.005) and pressure-time integral (35.0 kPa/s ± 12.0, p = 0.005) compared to controls (23.3 N/s ± 10.9 and 24.5 kPa/s ± 9.5). In the lateral forefoot, ankle instability subjects demonstrated significantly greater maximum force (239.9N ± 81.2, p = 0.004), force-time integral (37.0 N/s ± 14.9, p = 0.003), and time-to-peak pressure (51.1% ± 10.9, p = 0.007) compared to controls (170.6 N ± 49.3, 24.3 N/s ± 7.2 and 43.8% ± 4.3). Conclusion: Using an in-shoe plantar pressure system, chronic ankle instability subjects had greater plantar pressures and forces in the lateral foot compared to controls during jogging. Clinical Relevance: These findings may have implications in the etiology and treatment of chronic ankle instability. Level of Evidence: III, Retrospective Case Control Study


Sign in / Sign up

Export Citation Format

Share Document