scholarly journals Ventromedial hypothalamic neurons control a defensive emotion state

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Prabhat S Kunwar ◽  
Moriel Zelikowsky ◽  
Ryan Remedios ◽  
Haijiang Cai ◽  
Melis Yilmaz ◽  
...  

Defensive behaviors reflect underlying emotion states, such as fear. The hypothalamus plays a role in such behaviors, but prevailing textbook views depict it as an effector of upstream emotion centers, such as the amygdala, rather than as an emotion center itself. We used optogenetic manipulations to probe the function of a specific hypothalamic cell type that mediates innate defensive responses. These neurons are sufficient to drive multiple defensive actions, and required for defensive behaviors in diverse contexts. The behavioral consequences of activating these neurons, moreover, exhibit properties characteristic of emotion states in general, including scalability, (negative) valence, generalization and persistence. Importantly, these neurons can also condition learned defensive behavior, further refuting long-standing claims that the hypothalamus is unable to support emotional learning and therefore is not an emotion center. These data indicate that the hypothalamus plays an integral role to instantiate emotion states, and is not simply a passive effector of upstream emotion centers.

1997 ◽  
Vol 83 (1) ◽  
pp. 219-228 ◽  
Author(s):  
Anna S. Lijowska ◽  
Nevada W. Reed ◽  
Barbara A. Mertins Chiodini ◽  
Bradley T. Thach

Lijowska, Anna S., Nevada W. Reed, Barbara A. Mertins Chiodini, and Bradley T. Thach. Sequential arousal and airway-defensive behavior of infants in asphyxial sleep environments. J. Appl. Physiol. 83(1): 219–228, 1997.—Infants are prone to accidental asphyxiation. Therefore, we studied airway-defensive behaviors and their relationship to spontaneous arousal behavior in 41 healthy sleeping infants (2–26 wk old), using two protocols: 1) infant was rebreathing expired air, face covered by bedding material; and 2) infant was exposed to hypercarbia, face uncovered. Multiple measurements of respiratory and motor activities were recorded (video, polygraph). The infants’ response to increasing hypercarbia consisted of four highly stereotyped behaviors: sighs (augmented breaths), startles, thrashing limb movements, and full arousal (eyes open, cry). These behaviors occurred abruptly in self-limited clusters of activity and always in the same sequence: first a sigh coupled with a startle, then thrashing, then full arousal. Incomplete sequences (initial behaviors only) occurred far more frequently than the complete sequence and were variably effective in removing the bedding covering the airway. In both protocols, as inspired CO2increased, incomplete arousal sequences recurred periodically and with increasing frequency and complexity until the infant either succeeded in clearing his/her airway or was completely aroused. Spontaneous arousal sequences, identical to those occurring during hypercarbia, occurred periodically during sleep. This observation suggests that the infant’s airway-defensive responses to hypercarbia consist of an increase in the frequency and complexity of an endogenously regulated, periodically occurring sequence of arousal behaviors.


2020 ◽  
Author(s):  
Silvia Natale ◽  
Maria Esteban Masferrer ◽  
Senthilkumar Deivasigamani ◽  
Cornelius T. Gross

AbstractThe cerebral cortex is involved in the control of cognition and the processing of learned information and it appears to have a role in the adaptation of behavior in response to unpredictable circumstances. In addition, the cortex may have a role in the regulation of innate responses since rodents, cats or primates with surgical removal or accidental destruction of cortical regions show excessive irritability, aggression and rage elicited by threatening stimuli. However, it remains unclear whether cortex has an acute role in suppressing innate threat responses because the imprecision and chronic nature of these lesions leaves open the possibility that compensatory processes may underlie some of these phenotypes. In the present study we used pharmacogenetic inhibition to precisely, rapidly and reversibly suppress cortical pyramidal neuron function and examine its contribution to defensive behaviors elicited by a variety of innately aversive stimuli. Inhibition of cortex caused an increase of defensive responses elicited by an aggressive conspecific, a novel prey, and a physically stressful stimulus. These findings are consistent with a role of cortex in the acute inhibition of innate defensive behaviors.


2021 ◽  
Author(s):  
Quentin Montardy ◽  
Zheng Zhou ◽  
Lei Li ◽  
Qingning Yang ◽  
Zhuogui Lei ◽  
...  

AbstractDopamine (DA) system is intriguing in the aspect that distinct, typically opposing physiological functions are mediated by D1 dopamine receptors (Drd1) and D2 dopamine receptors (Drd2). Both Drd1+ and Drd2+ neurons were identified in superior colliculus (SC), a visuomotor integration center known for its role in defensive behaviors to visual threats. We hypothesized that Drd1+ and Drd2+ neurons in the SC may play a role in promoting instinctive defensive responses.Optogenetic activation of Drd2+ neurons, but not Drd1+ neurons, in the SC triggered strong defensive behaviors. Chemogenetic inhibition of SC Drd2+ neurons decreased looming-induced defensive behavior, suggesting involvement of SC Drd2+ neurons in defensive responses. To further confirm this functional role of Drd2 receptors, pretreatment with the Drd2+ agonist quinpirole in the SC impaired looming-evoked defensive responses, suggesting an essential role of Drd2 receptors in the regulation of innate defensive behavior. Inputs and outputs of SC Drd2+ neurons were investigated using viral tracing: SC Drd2+ neurons mainly receive moderate inputs from the Locus Coeruleus (LC), whilst we did not find any incoming projections from other dopaminergic structures. Our results suggest a sophisticated regulatory role of DA and its receptor system in innate defensive behavior.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bin Chu ◽  
Yongliang Tian ◽  
Jianwei Zhou ◽  
Zhuangsheng Tang ◽  
Kechi Dong ◽  
...  

AbstractDefensive behaviors are a response to immediate and potential threats in the environment, including abiotic and biotic threats. Subterranean rodents exhibit morphological and physiological adaptions for life underground, and they will seal with mounds and additional plugs when their burrow opened. However, little is known about the factors driving this defensive behavior. In this study, we selected a subterranean rodent, plateau zokor (Myospalax fontanieri), as a species to investigate (both in the laboratory and in the field) the possible factors responsible for burrow-sealing behavior. Our results showed that: (1) In the laboratory, the burrow-sealing frequency of plateau zokor in response to five factors were as follows: oxygen (52.63%) > light (34.58%) > temperature (20.24%) > gas flow (6.48%) > sound/control (0%). Except for light, the burrow-sealing frequency in response to other factors was significantly lower than that in response to oxygen (P < 0.05). (2) Burrow-sealing behavior in response to each treatment did not differ significantly between males and females in the laboratory experiment. (3) In the field, during the animal’s active periods in both the cold and warm season, the burrow-sealing frequency under the oxygen treatment was higher than that under the light and temperature treatments. Plateau zokors were found not to be sensitive to these treatments during their inactive periods during both the cold and warm season. (4) The latency to reseal the burrow showed no obvious differences between each treatment both in the laboratory and in the field. In conclusion, the main factor that influences the burrow-sealing behavior of plateau zokors is the variation in oxygen concentration, and this defensive behavior is related to their activity rhythm.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3739 ◽  
Author(s):  
Thiago Acosta Oliveira ◽  
Renan Idalencio ◽  
Fabiana Kalichak ◽  
João Gabriel dos Santos Rosa ◽  
Gessi Koakoski ◽  
...  

Chemical communication relating to predation risk is a trait common among fish species. Prey fish under threat of predation can signal risk to conspecific fish, which then exhibit defensive responses. Fish also assess predation risk by visual cues and change their behavior accordingly. Here, we explored whether these behavioral changes act as visual alarm signals to conspecific fish that are not initially under risk. We show that shoals of zebrafish (Danio rerio) visually exposed to a predator display antipredator behaviors. In addition, these defensive maneuvers trigger antipredator reactions in conspecifics and, concomitantly, stimulate the hypothalamus-pituitary-interrenal axis, leading to cortisol increase. Thus, we conclude that zebrafish defensive behaviors act as visual alarm cues that induce antipredator and stress response in conspecific fish.


2017 ◽  
Author(s):  
Ruben Vale ◽  
Dominic A. Evans ◽  
Tiago Branco

SummaryInstinctive defensive behaviors are essential for animal survival. Across the animal kingdom there are sensory stimuli that innately represent threat and trigger stereotyped behaviors such as escape or freezing [1-4]. While innate behaviors are considered to be hard-wired stimulus-responses [5], they act within dynamic environments, and factors such as the properties of the threat [6-9] and its perceived intensity [1, 10, 11], access to food sources [12-14] or expectations from past experience [15, 16], have been shown to influence defensive behaviors, suggesting that their expression can be modulated. However, despite recent work [2, 4, 17-21], little is known about how flexible mouse innate defensive behaviors are, and how quickly they can be modified by experience. To address this, we have investigated the dependence of escape behavior on learned knowledge about the spatial environment, and how the behavior is updated when the environment changes acutely. Using behavioral assays with innately threatening visual and auditory stimuli, we show that the primary goal of escape in mice is to reach a previously memorized shelter location. Memory of the escape target can be formed in a single shelter visit lasting less than 20 seconds, and changes in the spatial environment lead to a rapid update of the defensive action, including changing the defensive strategy from escape to freezing. Our results show that while there are innate links between specific sensory features and defensive behavior, instinctive defensive actions are surprisingly flexible and can be rapidly updated by experience to adapt to changing spatial environments.


Author(s):  
Rhayra Xavier do Carmo Silva ◽  
Monica Gomes Lima-Maximino ◽  
Caio Maximino

Defensive behavior is a function of specific survival circuits, the &ldquo;aversive brain system&rdquo;, that are thought to be conserved across vertebrates, and involve threat detection and the organization of defensive responses to reduce or eliminate threat. In mammals, these circuits involve amygdalar and hypothalamic subnuclei and midbrain circuits. The increased interest in teleost fishes as model organisms in neuroscience created a demand to understand which brain circuits are involved in defensive behavior. Telencephalic and habenular circuits represent a &ldquo;forebrain circuit&rdquo; for threat processing and organization of responses, being important to&nbsp; mounting appropriate coping responses. Specific hypothalamic circuits organize neuroendocrine and neurovegetative outputs, but are the less well-studied in fish. A &ldquo;midbrain circuit&rdquo; is represented by projections to interneurons in the optic tectum which mediate fast escape responses via projections to the central gray and/or the brainstem escape network. Threatening stimuli (especially visual stimuli) can bypass the &ldquo;high road&rdquo; and directly activate this system, initiating escape responses. Increased attention to these circuits in an evolutionary framework is still needed.


2021 ◽  
Author(s):  
Benjamin J. I. Schellenberg ◽  
Daniel Seth Bailis

Objective: When facing setbacks and obstacles, the dualistic model of passion outlines that obsessive passion, and not harmonious passion, will predict greater levels of defensiveness (Vallerand, 2015). Our aim was to determine if these passion dimensions predicted defensiveness in the same way when confronted with threatening messages targeting the decision to pursue a passion.Method: Across four studies with passionate Facebook users, hockey fans, and runners (total N = 763), participants viewed messages giving reasons why their favorite activity should not be pursued. Participants either reported their desire to read the messages (Studies 1 and 2) or evaluated the messages after reading them (Studies 3 and 4).Results: Harmonious passion consistently predicted higher levels of avoidance or negative evaluations of the messages. These responses were attenuated for participants who had previously affirmed an important value (Study 1), or who were told that they do not control the passions they pursue (Study 4).Conclusions: Harmonious passion entails a sense of autonomy and control over activity engagement, which usually leads to non-defensive behavior. However, this sense of control may elicit more defensive responses from more harmoniously passionate individuals when the decision itself to pursue an activity is under attack.


2018 ◽  
Author(s):  
Zheng Zhou ◽  
Xuemei Liu ◽  
Shanping Chen ◽  
Zhijian Zhang ◽  
Yu-anming Liu ◽  
...  

SUMMARYInnate defensive responses are essential for animal survival and are conserved across species. The ventral tegmental area (VTA) plays important roles in learned appetitive and aversive behaviors, but whether it plays a role in mediating or modulating innate defensive responses is currently unknown. We report that GABAergic neurons in the mouse VTA (VTAGABA+) are preferentially activated compared to VTA dopaminergic (VTADA+) neurons when a threatening visual stimulus evokes innate defensive behavior. Functional manipulation of these neurons showed that activation of VTAGABA+ neurons is indispensable for looming-evoked defensive flight behavior and photoactivation of these neurons is sufficient for looming-evoked defensive-like flight behavior, whereas no such role can be attributed for VTADA+ neurons. Viral tracing and in vivo and in vitro electrophysiological recordings showed that VTAGABA+ neurons receive direct excitatory inputs from the superior colliculus (SC). Furthermore, we showed that glutamatergic SC-VTA projections synapse onto VTAGABA+ neurons that project to the central nucleus of the amygdala (CeA) and that the CeA is involved in mediating the defensive behavior. Our findings demonstrate that visual information about aerial threats access to the VTAGABA+ neurons mediating innate behavioral responses, suggesting a more general role for the VTA.


2017 ◽  
Author(s):  
Neda Assareh ◽  
Elena E. Bagley ◽  
Pascal Carrive ◽  
Gavan P. McNally

AbstractThe midbrain periaqueductal gray (PAG) coordinates the expression and topography of defensive behaviors to threat and also plays an important role in Pavlovian fear learning itself. Whereas the role of PAG in expression of defensive behavior is well understood, the relationship between activity of PAG neurons and fear learning, the exact timing of PAG contributions to learning during the conditioning trial, and the contributions of different PAG columns to fear learning are poorly understood. We assessed the effects of optogenetic inhibition of lateral (LPAG) and ventrolateral (VLPAG) PAG neurons on fear learning. Using adenoassociated viral vectors expressing halorhodopsin (eNpHR3.0), we show that brief optogenetic inhibition of LPAG or VLPAG during delivery of the shock unconditioned stimulus (US) augments acquisition of contextual or cued fear conditioning and we also show that this inhibition augments post-encounter defensive responses to a non-noxious threat. Taken together, these results show that LPAG and VLPAG serve a key role in regulation of Pavlovian fear learning at the time of US delivery. These findings provide strong support for existing models which state that LPAG and VLPAG contribute to a fear prediction error signal determining variations in the effectiveness of the aversive US in supporting learning.


Sign in / Sign up

Export Citation Format

Share Document