scholarly journals Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Mar Gacias ◽  
Sevasti Gaspari ◽  
Patricia-Mae G Santos ◽  
Sabrina Tamburini ◽  
Monica Andrade ◽  
...  

Gene-environment interactions impact the development of neuropsychiatric disorders, but the relative contributions are unclear. Here, we identify gut microbiota as sufficient to induce depressive-like behaviors in genetically distinct mouse strains. Daily gavage of vehicle (dH2O) in nonobese diabetic (NOD) mice induced a social avoidance behavior that was not observed in C57BL/6 mice. This was not observed in NOD animals with depleted microbiota via oral administration of antibiotics. Transfer of intestinal microbiota, including members of the Clostridiales, Lachnospiraceae and Ruminococcaceae, from vehicle-gavaged NOD donors to microbiota-depleted C57BL/6 recipients was sufficient to induce social avoidance and change gene expression and myelination in the prefrontal cortex. Metabolomic analysis identified increased cresol levels in these mice, and exposure of cultured oligodendrocytes to this metabolite prevented myelin gene expression and differentiation. Our results thus demonstrate that the gut microbiota modifies the synthesis of key metabolites affecting gene expression in the prefrontal cortex, thereby modulating social behavior.

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Dina Silke Malling Damlund ◽  
Stine Broeng Metzdorff ◽  
Jane Preuss Hasselby ◽  
Maria Wiese ◽  
Mia Lundsager ◽  
...  

Neonatal studies in different mouse strains reveal that early life colonization affects the development of adaptive immunity in mice. The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes, but neonatal studies of NOD mice are lacking. We hypothesized that NOD mice deviate from another much used mouse strain, C57BL/6, with respect to postnatal microbiota and/or hematopoiesis and compared this in newborn mice of dams housed under the same conditions. A distinct bacteria profile rich instaphylococciwas found at postnatal days (PND) 1–4 in NOD mice. Furthermore, a distinct splenic cell profile high in a granulocytic phenotype was evident in the neonatal NOD mice whereas neonatal C57BL/6 mice showed a profile rich in monocytes. Neonatal expression ofReg3gandMuc2in the gut was deviating in NOD mice and coincided with fewer bacteria attaching to the Mucosal surface in NOD compared to C57BL/6 mice.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Alessandro Tanca ◽  
Antonio Palomba ◽  
Cristina Fraumene ◽  
Valeria Manghina ◽  
Michael Silverman ◽  
...  

ABSTRACT Increasing evidence suggests that the intestinal microbiota is involved in the pathogenesis of type 1 diabetes (T1D). Here we sought to determine which gut microbial taxa and functions vary between nonobese diabetic (NOD) mice and genetically modified NOD mice protected from T1D (Eα16/NOD) at 10 weeks of age in the time window between insulitis development and T1D onset. The gut microbiota of NOD mice were investigated by analyzing stool samples with a metaproteogenomic approach, comprising both 16S rRNA gene sequencing and microbial proteome profiling through high-resolution mass spectrometry. A depletion of Firmicutes (particularly, several members of Lachnospiraceae) in the NOD gut microbiota was observed compared to the level in the Eα16/NOD mice microbiota. Moreover, the analysis of proteins actively produced by the gut microbiota revealed different profiles between NOD and Eα16/NOD mice, with the production of butyrate biosynthesis enzymes being significantly reduced in diabetic mice. Our results support a model for gut microbiota influence on T1D development involving bacterium-produced metabolites as butyrate. IMPORTANCE Alterations of the gut microbiota early in age have been hypothesized to impact T1D autoimmune pathogenesis. In the NOD mouse model, protection from T1D has been found to operate via modulation of the composition of the intestinal microbiota during a critical early window of ontogeny, although little is known about microbiota functions related to T1D development. Here, we show which gut microbial functions are specifically associated with protection from T1D in the time window between insulitis development and T1D onset. In particular, we describe that production of butyrate biosynthesis enzymes is significantly reduced in NOD mice, supporting the hypothesis that modulating the gut microbiota butyrate production may influence T1D development.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Mirian Mendoza ◽  
Luis Pow Sang ◽  
Qi Qiu ◽  
Sofia Casares ◽  
Teodor-D. Brumeanu

Background. Plasmodium yoelii 17XNL is a nonlethal malaria strain in mice of different genetic backgrounds including the C57BL/6 mice (I-Ab/I-Enull) used in this study as a control strain. We have compared the trends of blood stage infection with the nonlethal murine strain of P. yoelii 17XNL malaria protozoan in immunocompetent Nonobese Diabetic (NOD) mice prone to type 1 diabetes (T1D) and C57BL/6 mice (control mice) that are not prone to T1D and self-cure the P. yoelii 17XNL infection. Prediabetic NOD mice could not mount a protective antibody response to the P. yoelii 17XNL-infected red blood cells (iRBCs), and they all succumbed shortly after infection. Our data suggest that the lack of anti-P. yoelii 17XNL-iRBCs protective antibodies in NOD mice is a result of parasite-induced, Foxp3+ T regulatory (Treg) cells able to suppress the parasite-specific antibody secretion. Conclusions. The NOD mouse model may help in identifying new mechanisms of B-cell evasion by malaria parasites. It may also serve as a more accurate tool for testing antimalaria therapeutics due to the lack of interference with a preexistent self-curing mechanism present in other mouse strains.


2013 ◽  
Vol 24 (15) ◽  
pp. 2467-2476 ◽  
Author(s):  
Flávia Gerelli Ghiraldini ◽  
Ana Carolina Vitolo Crispim ◽  
Maria Luiza Silveira Mello

Hyperglycemia, like aging, induces chromatin remodeling in mouse hepatocytes in comparison to normoglycemia and younger age, respectively. Changes in glucose metabolism also affect the action and expression of sirtuins, promoting changes in chromatin conformation and dynamics. Here we investigate the abundance and activity of the nuclear sirtuins Sirt1, Sirt6, and Sirt7 in mouse hepatocytes in association with specific histone acetylation, DNA damage, and the activation of nucleolar organizing regions (NORs) in hyperglycemic nonobese diabetic (NOD) and old normoglycemic BALB/c mouse strains. Higher levels of Sirt1 and PGC-1α and increased expression of gluconeogenesis pathway genes are found in the hyperglycemic NOD mice. Increased Sirt6 abundance is found in the hyperglycemic NOD mice, which might increase DNA damage repair. With aging, lower Sirt1 abundance and activity, increased acetylated histone modifications and Sirt7 levels, and NOR methylation are found. Thus, whereas in normal aging cell metabolism is reduced, in the diabetic mice a compensatory mechanism may elevate Sirt1 and Sirt6 levels, increasing gluconeogenesis and DNA repair from the oxidative damage caused by hyperglycemia. Therefore understanding the regulation of epigenetic factors in diabetes and aging is crucial for the development of new therapeutic approaches that could prevent diseases and improve quality of life.


2021 ◽  
Author(s):  
Takuya Sasaki ◽  
Nahoko Kuga ◽  
Reimi Abe ◽  
Kotomi Takano ◽  
Yuji Ikegaya

The medial prefrontal cortex and amygdala are involved in the regulation of social behavior and associated with psychiatric diseases but their detailed neurophysiological mechanisms at a network level remain unclear. We recorded local field potentials (LFPs) from the dorsal medial PFC (dmPFC) and basolateral amygdala (BLA) while mice engaged on social behavior. We found that in wild-type mice, both the dmPFC and BLA increased 4–7 Hz oscillation power and decreased 30–60 Hz power when they needed to attend to another target mouse. In mouse models with reduced social interactions, dmPFC 4–7 Hz power further increased especially when they exhibited social avoidance behavior. In contrast, dmPFC and BLA decreased 4–7 Hz power when wild-type mice socially approached a target mouse. Frequency-specific optogenetic manipulations of replicating social approach-related LFP patterns restored social interaction behavior in socially deficient mice. These results demonstrate a neurophysiological substrate of the prefrontal cortex and amygdala related to social behavior and provide a unified pathophysiological understanding of neuronal population dynamics underlying social behavioral deficits.


Author(s):  
Mar Gacias ◽  
Sevasti Gaspari ◽  
Patricia-Mae G Santos ◽  
Sabrina Tamburini ◽  
Monica Andrade ◽  
...  

2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Jennifer Davids ◽  
Sami Saikaly ◽  
Alexandra Lucas

Aim Atherosclerosis is characterized by chronic inflammation and cell death (apoptosis). Serine protease inhibitors, or serpins, regulate inflammatory, thrombotic and apoptotic pathways. Poxviruses encode cross-class serpins that prevent host cell apoptosis. Serp-2, from Myxoma, reduces plaque, inflammation and apoptosis in animal models; CrmA, from Vaccinia, does not. Both serpins target Caspase 1 and Granzyme B, but the reasons for the differing effects in vivo are unknown. In prior research three Myxoma viral proteins, including Serp-2, reduced monocyte invasion, plaque growth, and aneurysm formation in ApoE-/- mice after angioplasty. These same proteins alter expression of a shared cohort of 48 apoptosis-related genes in human monocytes treated with camptothecin. This study assesses the effects of Serp-2 and CrmA on apoptotic gene expression in a mouse peritoneal inflammation model. Methods Mouse strains deficient for Granzyme B (GzmB, N=13) and Caspase 1 (Casp1, N=15) were compared to their respective background mice (C57Bl/6 and Nod, N=15 each) 18 hours after treatment with PMA and either Serp-2 or CrmA. RNA was isolated and analyzed by RT-PCR and normalized to GAPDH, then to the PMA-only treated control. Results Compared to human monocytes, mouse peritoneal exudates from knockout mice displayed differential alteration of BCL2-associated athanogene 3 (BAG3) in response to treatment with Serp-2 or CrmA. Serp-2 treatment reduced expression levels compared to CrmA treatment in GzmB (p=0.0267) and C57Bl/6 mice (p=0.0280). Casp1-/- mice treated with Serp-2 downregulate BAG3, expressing 9.7-fold less than Nod mice (p=0.0006), but CrmA had no significant effect in either strain. An associated differential migration of Ly6Chi and Ly6Ghi cells was also discovered in knockout mice with serpin treatments. Discussion One candidate gene found in human monocytes, BAG3, has reduced gene expression after Serp-2 treatment in mouse peritoneal exudates but increased by CrmA. BAG3 is known to alter cell migration and apoptosis, important to atherosclerotic progression. BAG3 is regulated by 3 myxomaviral proteins in human and mouse cells, underscoring a potential role as a lynchpin in viral protein anti-inflammatory and anti-apoptotic pathways.


1994 ◽  
Vol 3 (4) ◽  
pp. 273-282
Author(s):  
Christelle Faveeuw ◽  
Marie-Claude Gagnerault ◽  
Françoise Lepault

Subpopulations of lymphoid cells were compared with respect to their ability to migrate into peripheral lymphoid organs of nonobese diabetic (NOD) mice and various strains of control mice. In short-term,in vivohoming studies, no major differences in the pattern of homing of B and T cells were observed among all mouse strains studied. On the other hand, CD4 cells localized consistently more efficiently than CD8 cells in both PP and LN of adult NOD and BALB/c mice, whereas both populations migrated roughly equivalently in LN of adult DBA/2, CBA, and C57BL/6 mice. No age-dependent differences in the homing of CD4 and CD8 cells were observed in BALB/c mice. On the contrary, in 2-week-old NOD mice, CD4 and CD8 cells migrated equally well. The preferential entry of CD4 cells in adult NOD and BALB/c did not result from increased blood transit time of CD8 cells. On the other hand, the preferential migration of CD8 cells was observed in the liver, whereas the two T-cell subsets migrated equally well in the lungs. The differences in the homing characteristics of CD4 and CD8 cells among NOD, BALB/c, and C57BL/6 mice were not related to modifications in the level of expression of adhesion molecules such as MEL-14, LFA-1, and Pgp-1.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Soe-Minn Htway ◽  
Takehiro Suzuki ◽  
Sanda Kyaw ◽  
Keiko Nohara ◽  
Tin-Tin Win-Shwe

Abstract Background Arsenic is a developmental neurotoxicant. It means that its neurotoxic effect could occur in offspring by maternal arsenic exposure. Our previous study showed that developmental arsenic exposure impaired social behavior and serotonergic system in C3H adult male mice. These effects might affect the next generation with no direct exposure to arsenic. This study aimed to detect the social behavior and related gene expression changes in F2 male mice born to gestationally arsenite-exposed F1 mice. Methods Pregnant C3H/HeN mice (F0) were given free access to tap water (control mice) or tap water containing 85 ppm sodium arsenite from days 8 to 18 of gestation. Arsenite was not given to F1 or F2 mice. The F2 mice were generated by mating among control F1 males and females, and arsenite-F1 males and females at the age of 10 weeks. At 41 weeks and 74 weeks of age respectively, F2 males were used for the assessment of social behavior by a three-chamber social behavior apparatus. Histological features of the prefrontal cortex were studied by ordinary light microscope. Social behavior-related gene expressions were determined in the prefrontal cortex by real time RT-PCR method. Results The arsenite-F2 male mice showed significantly poor sociability and social novelty preference in both 41-week-old group and 74-week-old group. There was no significant histological difference between the control mice and the arsenite-F2 mice. Regarding gene expression, serotonin receptor 5B (5-HT 5B) mRNA expression was significantly decreased (p < 0.05) in the arsenite-F2 male mice compared to the control F2 male mice in both groups. Brain-derived neurotrophic factor (BDNF) and dopamine receptor D1a (Drd1a) gene expressions were significantly decreased (p < 0.05) only in the arsenite-F2 male mice of the 74-week-old group. Heme oxygenase-1 (HO-1) gene expression was significantly increased (p < 0.001) in the arsenite-F2 male mice of both groups, but plasma 8-hydroxy-2′-deoxyguanosine (8-OHdG) and cyclooxygenase-2 (COX-2) gene expression were not significantly different. Interleukin-1β (IL-1β) mRNA expression was significantly increased only in 41-week-old arsenite-F2 mice. Conclusions These findings suggest that maternal arsenic exposure affects social behavior in F2 male mice via serotonergic system in the prefrontal cortex. In this study, COX-2 were not increased although oxidative stress marker (HO-1) was increased significantly in arsnite-F2 male mice.


Sign in / Sign up

Export Citation Format

Share Document