scholarly journals Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Krzysztof Brzezinka ◽  
Simone Altmann ◽  
Hjördis Czesnick ◽  
Philippe Nicolas ◽  
Michal Gorka ◽  
...  

Plants as sessile organisms can adapt to environmental stress to mitigate its adverse effects. As part of such adaptation they maintain an active memory of heat stress for several days that promotes a more efficient response to recurring stress. We show that this heat stress memory requires the activity of the FORGETTER1 (FGT1) locus, with fgt1 mutants displaying reduced maintenance of heat-induced gene expression. FGT1 encodes the Arabidopsis thaliana orthologue of Strawberry notch (Sno), and the protein globally associates with the promoter regions of actively expressed genes in a heat-dependent fashion. FGT1 interacts with chromatin remodelers of the SWI/SNF and ISWI families, which also display reduced heat stress memory. Genomic targets of the BRM remodeler overlap significantly with FGT1 targets. Accordingly, nucleosome dynamics at loci with altered maintenance of heat-induced expression are affected in fgt1. Together, our results suggest that by modulating nucleosome occupancy, FGT1 mediates stress-induced chromatin memory.

2014 ◽  
Vol 35 (1) ◽  
pp. 224-237 ◽  
Author(s):  
Zhijun Qiu ◽  
Carolyn Song ◽  
Navid Malakouti ◽  
Daniel Murray ◽  
Aymen Hariz ◽  
...  

Gene expression frequently requires chromatin-remodeling complexes, and it is assumed that these complexes have common gene targets across cell types. Contrary to this belief, we show by genome-wide expression profiling that Bptf, an essential and unique subunit of the nucleosome-remodeling factor (NURF), predominantly regulates the expression of a unique set of genes between diverse cell types. Coincident with its functions in gene expression, we observed that Bptf is also important for regulating nucleosome occupancy at nucleosome-free regions (NFRs), many of which are located at sites occupied by the multivalent factors Ctcf and cohesin. NURF function at Ctcf binding sites could be direct, because Bptf occupies Ctcf binding sitesin vivoand has physical interactions with CTCF and the cohesin subunit SA2. Assays of several Ctcf binding sites using reporter assays showed that their regulatory activity requires Bptf in two different cell types. Focused studies atH2-K1showed that Bptf regulates the ability of Klf4 to bind near an upstream Ctcf site, possibly influencing gene expression. In combination, these studies demonstrate that gene expression as regulated by NURF occurs partly through physical and functional interactions with the ubiquitous and multivalent factors Ctcf and cohesin.


2014 ◽  
Vol 42 (15) ◽  
pp. 9730-9739 ◽  
Author(s):  
Jiejun Shi ◽  
Meizhu Zheng ◽  
Youqiong Ye ◽  
Min Li ◽  
Xiaolong Chen ◽  
...  

Abstract ATP-dependent chromatin remodeling complexes regulate nucleosome organizations. In Drosophila, gene Brm encodes the core Brahma complex, the ATPase subunit of SWI/SNF class of chromatin remodelers. Its role in modulating the nucleosome landscape in vivo is unclear. In this study, we knocked down Brm in Drosophila third instar larvae to explore the changes in nucleosome profiles and global gene transcription. The results show that Brm knockdown leads to nucleosome occupancy changes throughout the entire genome with a bias in occupancy decrease. In contrast, the knockdown has limited impacts on nucleosome position shift. The knockdown also alters another important physical property of nucleosome positioning, fuzziness. Nucleosome position shift, gain or loss and fuzziness changes are all enriched in promoter regions. Nucleosome arrays around the 5′ ends of genes are reorganized in five patterns as a result of Brm knockdown. Intriguingly, the concomitant changes in the genes adjacent to the Brahma-dependent remodeling regions have important roles in development and morphogenesis. Further analyses reveal abundance of AT-rich motifs for transcription factors in the remodeling regions.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hungyo Kharerin ◽  
Paike J. Bhat ◽  
John F. Marko ◽  
Ranjith Padinhateeri

Abstract Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non–histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects and kinetics of TFs (Pho4p), we compute the probability of obtaining different “promoter states” having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions—Poisson, bimodal and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA.


2013 ◽  
Vol 11 (06) ◽  
pp. 1343001 ◽  
Author(s):  
VENKATA RAJESH YELLA ◽  
MANJU BANSAL

Gene expression is the most fundamental biological process, which is essential for phenotypic variation. It is regulated by various external (environment and evolution) and internal (genetic) factors. The level of gene expression depends on promoter architecture, along with other external factors. Presence of sequence motifs, such as transcription factor binding sites (TFBSs) and TATA-box, or DNA methylation in vertebrates has been implicated in the regulation of expression of some genes in eukaryotes, but a large number of genes lack these sequences. On the other hand, several experimental and computational studies have shown that promoter sequences possess some special structural properties, such as low stability, less bendability, low nucleosome occupancy, and more curvature, which are prevalent across all organisms. These structural features may play role in transcription initiation and regulation of gene expression. We have studied the relationship between the structural features of promoter DNA, promoter directionality and gene expression variability in S. cerevisiae. This relationship has been analyzed for seven different measures of gene expression variability, along with two different regulatory effect measures. We find that a few of the variability measures of gene expression are linked to DNA structural properties, nucleosome occupancy, TATA-box presence, and bidirectionality of promoter regions. Interestingly, gene responsiveness is most intimately correlated with DNA structural features and promoter architecture.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2049-P
Author(s):  
REBECCA K. DAVIDSON ◽  
NOLAN CASEY ◽  
JASON SPAETH

2000 ◽  
Vol 68 (2) ◽  
pp. 871-876 ◽  
Author(s):  
Li Liu ◽  
Kevin Dybvig ◽  
Victor S. Panangala ◽  
Vicky L. van Santen ◽  
Christopher T. French

ABSTRACT Mycoplasma gallisepticum, the cause of chronic respiratory infections in the avian host, possesses a family of M9/pMGA genes encoding an adhesin(s) associated with hemagglutination. Nucleotide sequences of M9/pMGA gene family members indicate extensive sequence similarity in the promoter regions of both the transcribed and silent genes. The mechanism that regulates M9/pMGA gene expression is unknown, but studies have revealed an apparent correlation between gene expression and the number of tandem GAA repeat motifs located upstream of the putative promoter. In this study, transposon Tn4001was used as a vector with the Escherichia coli lacZ gene as the reporter system to examine the role of the GAA repeats in M9/pMGA gene expression in M. gallisepticum. A 336-bp M9 gene fragment (containing the GAA repeat region, the promoter, and the translation start codon) was amplified by PCR, ligated with alacZ gene from E. coli, and inserted into the Tn4001-containing plasmid pISM2062. This construct was transformed into M. gallisepticum PG31. Transformants were filter cloned on agar supplemented with 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-Gal) to monitor lacZ gene expression on the basis of blue/white color selection. Several cycles of filter cloning resulted in cell lineages in which lacZ gene expression alternated between the On and Off states in successive generations of progeny clones. The promoter regions of the M9-lacZ hybrid genes of individual progeny clones were amplified by PCR and sequenced. The only differences between the promoter regions of the blue and white colonies were in the number of GAA repeats. Clones that expressedlacZ had exactly 12 tandem copies of the GAA repeat. Clones that did not express lacZ invariably had either more than 12 (14 to 16) or fewer than 12 (5 to 11) GAA repeats. Southern analysis of M. gallisepticum chromosomal DNA confirmed that the phase-variable expression of the lacZ reporter gene was not caused by Tn4001 transposition. These data strongly indicate that changes in the length of the GAA repeat region are responsible for regulating M9/pMGA gene expression.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Elisa Oberbeckmann ◽  
Vanessa Niebauer ◽  
Shinya Watanabe ◽  
Lucas Farnung ◽  
Manuela Moldt ◽  
...  

AbstractArrays of regularly spaced nucleosomes dominate chromatin and are often phased by alignment to reference sites like active promoters. How the distances between nucleosomes (spacing), and between phasing sites and nucleosomes are determined remains unclear, and specifically, how ATP-dependent chromatin remodelers impact these features. Here, we used genome-wide reconstitution to probe how Saccharomyces cerevisiae ATP-dependent remodelers generate phased arrays of regularly spaced nucleosomes. We find that remodelers bear a functional element named the ‘ruler’ that determines spacing and phasing in a remodeler-specific way. We use structure-based mutagenesis to identify and tune the ruler element residing in the Nhp10 and Arp8 modules of the INO80 remodeler complex. Generally, we propose that a remodeler ruler regulates nucleosome sliding direction bias in response to (epi)genetic information. This finally conceptualizes how remodeler-mediated nucleosome dynamics determine stable steady-state nucleosome positioning relative to other nucleosomes, DNA bound factors, DNA ends and DNA sequence elements.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 668
Author(s):  
Amit Kumar Singh ◽  
Shanmuhapreya Dhanapal ◽  
Alin Finkelshtein ◽  
Daniel A. Chamovitz

In nature, plants are exposed to several environmental stresses that can be continuous or recurring. Continuous stress can be lethal, but stress after priming can increase the tolerance of a plant to better prepare for future stresses. Reports have suggested that transcription factors are involved in stress memory after recurrent stress; however, less is known about the factors that regulate the resetting of stress memory. Here, we uncovered a role for Constitutive Photomorphogenesis 5A (CSN5A) in the regulation of stress memory for resetting transcriptional memory genes (APX2 and HSP22) and H3K4me3 following recurrent heat stress. Furthermore, CSN5A is also required for the deposition of H3K4me3 following recurrent heat stress. Thus, CSN5A plays an important role in the regulation of histone methylation and transcriptional stress memory after recurrent heat stress.


Sign in / Sign up

Export Citation Format

Share Document