scholarly journals Exploring conformational equilibria of a heterodimeric ABC transporter

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
M Hadi Timachi ◽  
Cedric AJ Hutter ◽  
Michael Hohl ◽  
Tufa Assafa ◽  
Simon Böhm ◽  
...  

ABC exporters pump substrates across the membrane by coupling ATP-driven movements of nucleotide binding domains (NBDs) to the transmembrane domains (TMDs), which switch between inward- and outward-facing (IF, OF) orientations. DEER measurements on the heterodimeric ABC exporter TM287/288 from Thermotoga maritima, which contains a non-canonical ATP binding site, revealed that in the presence of nucleotides the transporter exists in an IF/OF equilibrium. While ATP binding was sufficient to partially populate the OF state, nucleotide trapping in the pre- or post-hydrolytic state was required for a pronounced conformational shift. At physiologically high temperatures and in the absence of nucleotides, the NBDs disengage asymmetrically while the conformation of the TMDs remains unchanged. Nucleotide binding at the degenerate ATP site prevents complete NBD separation, a molecular feature differentiating heterodimeric from homodimeric ABC exporters. Our data suggest hydrolysis-independent closure of the NBD dimer, which is further stabilized as the consensus site nucleotide is committed to hydrolysis.

2004 ◽  
Vol 377 (1) ◽  
pp. 95-105 ◽  
Author(s):  
Juha OKKERI ◽  
Liisa LAAKKONEN ◽  
Tuomas HALTIA

In P-type ATPases, the nucleotide-binding (N) domain is located in the middle of the sequence which folds into the phosphorylation (P) domain. The N domain of ZntA, a Zn2+-translocating P-type ATPase from Escherichia coli, is approx. 13% identical with the N domain of sarcoplasmic reticulum Ca2+-ATPase. None of the Ca2+-ATPase residues involved in binding of ATP are found in ZntA. However, the sequence G503SGIEAQV in the N domain of ZntA resembles the motif GxGxxG, which forms part of the ATP-binding site in protein kinases. This motif is also found in Wilson disease protein where several disease mutations cluster in it. In the present work, we have made a set of disease mutation analogues, including the mutants G503S (Gly503→Ser), G505R and A508F of ZntA. At low [ATP], these mutant ATPases are poorly phosphorylated. The phosphorylation defect of the mutants G503S and G505R can, however, be partially (G503S) or fully (G505R) compensated for by using a higher [ATP], suggesting that these mutations lower the affinity for ATP. In all three mutant ATPases, phosphorylation by Pi has become less sensitive to the presence of ATP, also consistent with the proposal that the Gly503 motif plays a role in ATP binding. In order to test this hypothesis, we have modelled the N domain of ZntA using the sarcoplasmic reticulum Ca2+-ATPase structure as a template. In the model, the Gly503 motif, as well as the residues Glu470 and His475, are located in the proximity of the ATP-binding site. In conclusion, the mutagenesis data and the molecular model are consistent with the idea that the two loops carrying the residues Glu470, His475, Gly503 and Gly505 play a role in ATP binding and activation.


2000 ◽  
Vol 351 (3) ◽  
pp. 697-707 ◽  
Author(s):  
Ying-Yi ZHANG ◽  
Tove HAMMARBERG ◽  
Olof RADMARK ◽  
Bengt SAMUELSSON ◽  
Carol F. NG ◽  
...  

5-Lipoxygenase (5LO) catalyses the first two steps in the biosynthesis of leukotrienes, which are inflammatory mediators derived from arachidonic acid. 5LO activity is stimulated by ATP; however, a consensus ATP-binding site or nucleotide-binding site has not been found in its protein sequence. In the present study, affinity and photoaffinity labelling of 5LO with 5′-p-fluorosulphonylbenzoyladenosine (FSBA) and 2-azido-ATP showed that 5LO bound to the ATP analogues quantitatively and specifically and that the incorporation of either analogue inhibited ATP stimulation of 5LO activity. The stoichiometry of the labelling was 1.4mol of FSBA/mol of 5LO (of which ATP competed with 1mol/mol) or 0.94mol of 2-azido-ATP/mol of 5LO (of which ATP competed with 0.77mol/mol). Labelling with FSBA prevented further labelling with 2-azido-ATP, indicating that the same binding site was occupied by both analogues. Other nucleotides (ADP, AMP, GTP, CTP and UTP) also competed with 2-azido-ATP labelling, suggesting that the site was a general nucleotide-binding site rather than a strict ATP-binding site. Ca2+, which also stimulates 5LO activity, had no effect on the labelling of the nucleotide-binding site. Digestion with trypsin and peptide sequencing showed that two fragments of 5LO were labelled by 2-azido-ATP. These fragments correspond to residues 73–83 (KYWLNDDWYLK, in single-letter amino acid code) and 193–209 (FMHMFQSSWNDFADFEK) in the 5LO sequence. Trp-75 and Trp-201 in these peptides were modified by the labelling, suggesting that they were immediately adjacent to the C-2 position of the adenine ring of ATP. Given the stoichiometry of the labelling, the two peptide sequences of 5LO were probably near each other in the enzyme's tertiary structure, composing or surrounding the ATP-binding site of 5LO.


2001 ◽  
Vol 183 (16) ◽  
pp. 4761-4770 ◽  
Author(s):  
Juan M. Falcón-Pérez ◽  
Mónica Martı́nez-Burgos ◽  
Jesús Molano ◽  
Marı́a J. Mazón ◽  
Pilar Eraso

ABSTRACT The yeast cadmium factor (Ycf1p) is a vacuolar ATP binding cassette (ABC) transporter required for heavy metal and drug detoxification. Cluster analysis shows that Ycf1p is strongly related to the human multidrug-associated protein (MRP1) and cystic fibrosis transmembrane conductance regulator and therefore may serve as an excellent model for the study of eukaryotic ABC transporter structure and function. Identifying intramolecular interactions in these transporters may help to elucidate energy transfer mechanisms during transport. To identify regions in Ycf1p that may interact to couple ATPase activity to substrate binding and/or movement across the membrane, we sought intragenic suppressors of ycf1 mutations that affect highly conserved residues presumably involved in ATP binding and/or hydrolysis. Thirteen intragenic second-site suppressors were identified for the D777N mutation which affects the invariant Asp residue in the Walker B motif of the first nucleotide binding domain (NBD1). Two of the suppressor mutations (V543I and F565L) are located in the first transmembrane domain (TMD1), nine (A1003V, A1021T, A1021V, N1027D, Q1107R, G1207D, G1207S, S1212L, and W1225C) are found within TMD2, one (S674L) is in NBD1, and another one (R1415G) is in NBD2, indicating either physical proximity or functional interactions between NBD1 and the other three domains. The original D777N mutant protein exhibits a strong defect in the apparent affinity for ATP and V max of transport. The phenotypic characterization of the suppressor mutants shows that suppression does not result from restoring these alterations but rather from a change in substrate specificity. We discuss the possible involvement of Asp777 in coupling ATPase activity to substrate binding and/or transport across the membrane.


2019 ◽  
Vol 26 (7) ◽  
pp. 1062-1078 ◽  
Author(s):  
Maite Rocío Arana ◽  
Guillermo Alejandro Altenberg

Background:Proteins that belong to the ATP-binding cassette superfamily include transporters that mediate the efflux of substrates from cells. Among these exporters, P-glycoprotein and MRP1 are involved in cancer multidrug resistance, protection from endo and xenobiotics, determination of drug pharmacokinetics, and the pathophysiology of a variety of disorders. Objective:To review the information available on ATP-binding cassette exporters, with a focus on Pglycoprotein, MRP1 and related proteins. We describe tissue localization and function of these transporters in health and disease, and discuss the mechanisms of substrate transport. We also correlate recent structural information with the function of the exporters, and discuss details of their molecular mechanism with a focus on the nucleotide-binding domains. Methods: Evaluation of selected publications on the structure and function of ATP-binding cassette proteins. Conclusions:Conformational changes on the nucleotide-binding domains side of the exporters switch the accessibility of the substrate-binding pocket between the inside and outside, which is coupled to substrate efflux. However, there is no agreement on the magnitude and nature of the changes at the nucleotide- binding domains side that drive the alternate-accessibility. Comparison of the structures of Pglycoprotein and MRP1 helps explain differences in substrate selectivity and the bases for polyspecificity. P-glycoprotein substrates are hydrophobic and/or weak bases, and polyspecificity is explained by a flexible hydrophobic multi-binding site that has a few acidic patches. MRP1 substrates are mostly organic acids, and its polyspecificity is due to a single bipartite binding site that is flexible and displays positive charge.


Biochemistry ◽  
2001 ◽  
Vol 40 (34) ◽  
pp. 10382-10391 ◽  
Author(s):  
Heidi de Wet ◽  
David B. McIntosh ◽  
Gwenaëlle Conseil ◽  
Hélène Baubichon-Cortay ◽  
Tino Krell ◽  
...  

2019 ◽  
Vol 19 (11) ◽  
pp. 914-926 ◽  
Author(s):  
Maiara Bernardes Marques ◽  
Michael González-Durruthy ◽  
Bruna Félix da Silva Nornberg ◽  
Bruno Rodrigues Oliveira ◽  
Daniela Volcan Almeida ◽  
...  

Background:PIM-1 is a kinase which has been related to the oncogenic processes like cell survival, proliferation, and multidrug resistance (MDR). This kinase is known for its ability to phosphorylate the main extrusion pump (ABCB1) related to the MDR phenotype.Objective:In the present work, we tested a new mechanistic insight on the AZD1208 (PIM-1 specific inhibitor) under interaction with chemotherapy agents such as Daunorubicin (DNR) and Vincristine (VCR).Materials and Methods:In order to verify a potential cytotoxic effect based on pharmacological synergism, two MDR cell lines were used: Lucena (resistant to VCR) and FEPS (resistant to DNR), both derived from the K562 non-MDR cell line, by MTT analyses. The activity of Pgp was ascertained by measuring accumulation and the directional flux of Rh123. Furthermore, we performed a molecular docking simulation to delve into the molecular mechanism of PIM-1 alone, and combined with chemotherapeutic agents (VCR and DNR).Results:Our in vitro results have shown that AZD1208 alone decreases cell viability of MDR cells. However, co-exposure of AZD1208 and DNR or VCR reverses this effect. When we analyzed the ABCB1 activity AZD1208 alone was not able to affect the pump extrusion. Differently, co-exposure of AZD1208 and DNR or VCR impaired ABCB1 activity, which could be explained by compensatory expression of abcb1 or other extrusion pumps not analyzed here. Docking analysis showed that AZD1208 is capable of performing hydrophobic interactions with PIM-1 ATP- binding-site residues with stronger interaction-based negative free energy (FEB, kcal/mol) than the ATP itself, mimicking an ATP-competitive inhibitory pattern of interaction. On the same way, VCR and DNR may theoretically interact at the same biophysical environment of AZD1208 and also compete with ATP by the PIM-1 active site. These evidences suggest that AZD1208 may induce pharmacodynamic interaction with VCR and DNR, weakening its cytotoxic potential in the ATP-binding site from PIM-1 observed in the in vitro experiments.Conclusion:Finally, the current results could have a pre-clinical relevance potential in the rational polypharmacology strategies to prevent multiple-drugs resistance in human leukemia cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document