scholarly journals Cooperation between a hierarchical set of recruitment sites targets the X chromosome for dosage compensation

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Sarah Elizabeth Albritton ◽  
Anna-Lena Kranz ◽  
Lara Heermans Winterkorn ◽  
Lena Annika Street ◽  
Sevinc Ercan

In many organisms, it remains unclear how X chromosomes are specified for dosage compensation, since DNA sequence motifs shown to be important for dosage compensation complex (DCC) recruitment are themselves not X-specific. Here, we addressed this problem in C. elegans. We found that the DCC recruiter, SDC-2, is required to maintain open chromatin at a small number of primary DCC recruitment sites, whose sequence and genomic context are X-specific. Along the X, primary recruitment sites are interspersed with secondary sites, whose function is X-dependent. A secondary site can ectopically recruit the DCC when additional recruitment sites are inserted either in tandem or at a distance (>30 kb). Deletion of a recruitment site on the X results in reduced DCC binding across several megabases surrounded by topologically associating domain (TAD) boundaries. Our work elucidates that hierarchy and long-distance cooperativity between gene-regulatory elements target a single chromosome for regulation.

Development ◽  
1997 ◽  
Vol 124 (5) ◽  
pp. 1019-1031 ◽  
Author(s):  
T.L. Davis ◽  
B.J. Meyer

X chromosome expression in C. elegans is controlled by a chromosome-wide regulatory process called dosage compensation that specifically reduces by half the level of transcripts made from each hermaphrodite X chromosome. This process equalizes X expression between the sexes (XX hermaphrodites and XO males), despite their two-fold difference in X chromosome dose, and thereby prevents sex-specific lethality. Dosage compensation is achieved by a protein complex that associates with X in a sex-specific fashion to modulate gene expression. SDC-3, a protein that coordinately controls both sex determination and dosage compensation, activates dosage compensation by directing the dosage compensation protein complex to the hermaphrodite X chromosomes. We show that SDC-3 coordinates this assembly through its own sex-specific association with X. SDC-3 in turn requires other members of the dosage compensation gene hierarchy for its stability and its X localization. In addition, SDC-3 requires its own zinc finger motifs and an amino-terminal region for its X association. Our experiments suggest the possible involvement of zinc finger motifs in X chromosome recognition and the amino-terminal region in interactions with other dosage compensation proteins.


Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3323-3334 ◽  
Author(s):  
D.R. Hsu ◽  
P.T. Chuang ◽  
B.J. Meyer

DPY-30 is an essential component of the C. elegans dosage compensation machinery that reduces X chromosome transcript levels in hermaphrodites (XX). DPY-30 is required for the sex-specific association of DPY-27 (a chromosome condensation protein homolog) with the hermaphrodite X chromosomes. Loss of dpy-30 activity results in XX-specific lethality. We demonstrate that dpy-30 encodes a novel nuclear protein of 123 amino acids that is present in both hermaphrodites and males (XO) throughout development. DPY-30 itself is not associated with the X chromosomes, nor is its pattern of expression perturbed by mutations in the gene hierarchy that controls dosage compensation. Therefore, DPY-30 is a ubiquitous factor that is likely to promote the hermaphrodite-specific association of DPY-27 with X by affecting the activity of a sex-specific dosage compensation gene. In XO animals, DPY-30 is required for developmental processes other than dosage compensation: coordinated movement, normal body size, correct tail morphology and mating behavior. We demonstrate that rescue of both the XX-specific lethality and the XO-specific morphological defects caused by dpy-30 mutations can be achieved by inducing dpy-30 transcripts either in the mother or in the embryo through the end of gastrulation. dpy-30 appears to be cotranscribed in an operon with a novel RNA-binding protein.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Marat Sabirov ◽  
Olga Kyrchanova ◽  
Galina V. Pokholkova ◽  
Artem Bonchuk ◽  
Natalia Klimenko ◽  
...  

AbstractBackgroundPita is required for Drosophila development and binds specifically to a long motif in active promoters and insulators. Pita belongs to the Drosophila family of zinc-finger architectural proteins, which also includes Su(Hw) and the conserved among higher eukaryotes CTCF. The architectural proteins maintain the active state of regulatory elements and the long-distance interactions between them. In particular, Pita is involved in the formation of several boundaries between regulatory domains that controlled the expression of threehoxgenes in the Bithorax complex (BX-C). The CP190 protein is recruited to chromatin through interaction with the architectural proteins.ResultsUsing in vitro pull-down analysis, we precisely mapped two unstructured regions of Pita that interact with the BTB domain of CP190. Then we constructed transgenic lines expressing the Pita protein of thewild-typeand mutant variants lacking CP190-interacting regions. We have demonstrated that CP190-interacting region of the Pita can maintain nucleosome-free open chromatin and is critical for Pita-mediated enhancer blocking activity in BX-C. At the same time, interaction with CP190 is not required for the in vivo function of the mutant Pita protein, which binds to the same regions of the genome as the wild-type protein. Unexpectedly, we found that CP190 was still associated with the most of genome regions bound by the mutant Pita protein, which suggested that other architectural proteins were continuing to recruit CP190 to these regions.ConclusionsThe results directly demonstrate role of CP190 in insulation and support a model in which the regulatory elements are composed of combinations of binding sites that interact with several architectural proteins with similar functions.


2021 ◽  
Author(s):  
Laura Breimann ◽  
Ana Karina Morao ◽  
Jun Kim ◽  
David Jimenez ◽  
Nina Maryn ◽  
...  

Condensin is a multi-subunit SMC complex that binds to and compacts chromosomes. Unlike cohesin, in vivo regulators of condensin binding dynamics remain unclear. Here we addressed this question using C. elegans condensin DC, which specifically binds to and represses transcription of both X chromosomes in hermaphrodites for dosage compensation. Mutants of several chromatin modifiers that regulate H4K20me and H4K16ac cause varying degrees of X chromosome derepression. We used fluorescence recovery after photobleaching (FRAP) to analyze how these modifiers regulate condensin DC binding dynamics in vivo. We established FRAP using the SMC4 homolog DPY-27 and showed that a well-characterized ATPase mutation abolishes its binding. The greatest effect on condensin DC dynamics was in a null mutant of the H4K20me2 demethylase DPY-21, where the mobile fraction of the complex reduced from ~30% to 10%. In contrast, a catalytic mutant of dpy-21 did not regulate condensin DC mobility. Separation of catalytic and non-catalytic activity is also supported by Hi-C data in the dpy-21 null mutant. Together, our results indicate that DPY-21 has a non-catalytic role in regulating the dynamics of condensin DC binding, which is important for transcription repression.


2018 ◽  
Author(s):  
Michal Pawlak ◽  
Katarzyna Z. Kedzierska ◽  
Maciej Migdal ◽  
Karim Abu Nahia ◽  
Jordan A. Ramilowski ◽  
...  

ABSTRACTThe development of an organ involves dynamic regulation of gene transcription and complex multipathway interactions. To better understand transcriptional regulatory mechanism driving heart development and the consequences of its disruption, we isolated cardiomyocytes (CMs) from wild-type zebrafish embryos at 24, 48 and 72 hours post fertilization corresponding to heart looping, chamber formation and heart maturation, and from mutant lines carrying loss-of-function mutations in gata5, tbx5a and hand2, transcription factors (TFs) required for proper heart development. The integration of CM transcriptomics (RNA-seq) and genome-wide chromatin accessibility maps (ATAC-seq) unravelled dynamic regulatory networks driving crucial events of heart development. These networks contained key cardiac TFs including Gata5/6, Nkx2.5, Tbx5/20, and Hand2, and are associated with open chromatin regions enriched for DNA sequence motifs belonging to the family of the corresponding TFs. These networks were disrupted in cardiac TF mutants, indicating their importance in proper heart development. The most prominent gene expression changes, which correlated with chromatin accessibility modifications within their proximal promoter regions, occurred between heart looping and chamber formation, and were associated with metabolic and hematopoietic/cardiac switch during CM maturation. Furthermore, loss of function of cardiac TFs Gata5, Tbx5a, and Hand2 affected the cardiac regulatory networks and caused global changes in chromatin accessibility profile. Among regions with differential chromatin accessibility in mutants were highly conserved non-coding elements which represent putative cis regulatory elements with potential role in heart development and disease. Altogether, our results revealed the dynamic regulatory landscape at key stages of heart development and identified molecular drivers of heart morphogenesis.


2021 ◽  
Author(s):  
Laura Breimann ◽  
Ana Karina Morao ◽  
Jun Kim ◽  
David Sebastian Jimenez ◽  
Nina Maryn ◽  
...  

Condensin is a multi-subunit SMC complex that binds to and compacts chromosomes. Here we addressed the regulation of condensin binding dynamics using C. elegans condensin DC, which represses X chromosomes in hermaphrodites for dosage compensation. We established fluorescence recovery after photobleaching (FRAP) using the SMC4 homolog DPY-27 and showed that a well-characterized ATPase mutation abolishes its binding. Next, we performed FRAP in the background of several chromatin modifier mutants that cause varying degrees of X-chromosome derepression. The greatest effect was in a null mutant of the H4K20me2 demethylase DPY-21, where the mobile fraction of condensin DC reduced from ∼30% to 10%. In contrast, a catalytic mutant of dpy-21 did not regulate condensin DC mobility. Hi-C data in the dpy-21 null mutant showed little change compared to wild type, uncoupling Hi-C measured long-range DNA contacts from transcriptional repression of the X chromosomes. Together, our results indicate that DPY-21 has a non-catalytic role in regulating the dynamics of condensin DC binding, which is important for transcription repression.


2020 ◽  
Author(s):  
Marat Sabirov ◽  
Olga Kyrchanova ◽  
Galina V. Pokholkova ◽  
Artem Bonchuk ◽  
Natalia Klimenko ◽  
...  

AbstractThe architectural protein Pita is critical for Drosophila embryogenesis and predominantly binds to gene promoters and insulators. In particular, Pita is involved in the organization of boundaries between regulatory domains that controlled the expression of three hox genes in the Bithorax complex (BX-C). The best-characterized partner for Pita is the BTB/POZ-domain containing protein CP190. Using in vitro pull-down analysis, we precisely mapped two unstructured regions of Pita that interact with the BTB domain of CP190. Then we constructed transgenic lines expressing the Pita protein of the wild-type and mutant variants lacking CP190-interacting regions. The expression of the mutant protein completely complemented the null pita mutation. ChIP-seq experiments with wild-type and mutant embryos showed that the deletion of the CP190-interacting regions did not significantly affect the binding of the mutant Pita protein to most chromatin sites. However, the mutant Pita protein does not support the ability of multimerized Pita sites to prevent cross-talk between the iab-6 and iab-7 regulatory domains that activate the expression of Abdominal-B (Abd-B), one of the genes in the BX-C. The recruitment of a chimeric protein consisting of the DNA-binding domain of GAL4 and CP190-interacting region of the Pita to the GAL4 binding sites on the polytene chromosomes of larvae induces the formation of a new interband, which is a consequence of the formation of open chromatin in this region. These results suggested that the interaction with CP190 is required for the primary Pita activities, but other architectural proteins may also recruit CP190 in flies expressing only the mutant Pita protein.Author SummaryPita is required for Drosophila development and binds specifically to a long motif in active promoters and insulators. Pita belongs to the Drosophila family of zinc-finger architectural proteins, which also includes Su(Hw) and the conserved among higher eukaryotes CTCF. The architectural proteins maintain the active state of regulatory elements and the long-distance interactions between them. The CP190 protein is recruited to chromatin through interaction with the architectural proteins. Here we mapped two regions in Pita that are required for interaction with the CP190 protein. We have demonstrated that CP190-interacting region of the Pita can maintain nucleosome-free open chromatin and is critical for Pita-mediated enhancer blocking activity. At the same time, interaction with CP190 is not required for the in vivo function of the mutant Pita protein, which binds to the same regions of the genome as the wild-type protein. Unexpectedly, we found that CP190 was still associated with the most of genome regions bound by the mutant Pita protein, which suggested that other architectural proteins were continuing to recruit CP190 to these regions. These results support a model in which the regulatory elements are composed of combinations of binding sites that interact with several architectural proteins with similar functions.


Sign in / Sign up

Export Citation Format

Share Document