scholarly journals Malaria parasite LIMP protein regulates sporozoite gliding motility and infectivity in mosquito and mammalian hosts

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jorge M Santos ◽  
Saskia Egarter ◽  
Vanessa Zuzarte-Luís ◽  
Hirdesh Kumar ◽  
Catherine A Moreau ◽  
...  

Gliding motility allows malaria parasites to migrate and invade tissues and cells in different hosts. It requires parasite surface proteins to provide attachment to host cells and extracellular matrices. Here, we identify the Plasmodium protein LIMP (the name refers to a gliding phenotype in the sporozoite arising from epitope tagging of the endogenous protein) as a key regulator for adhesion during gliding motility in the rodent malaria model P. berghei. Transcribed in gametocytes, LIMP is translated in the ookinete from maternal mRNA, and later in the sporozoite. The absence of LIMP reduces initial mosquito infection by 50%, impedes salivary gland invasion 10-fold, and causes a complete absence of liver invasion as mutants fail to attach to host cells. GFP tagging of LIMP caused a limping defect during movement with reduced speed and transient curvature changes of the parasite. LIMP is an essential motility and invasion factor necessary for malaria transmission.

2020 ◽  
Author(s):  
Jessica Kehrer ◽  
Dominik Ricken ◽  
Leanne Strauss ◽  
Emma Pietsch ◽  
Julia M. Heinze ◽  
...  

AbstractTransmission of the malaria parasite Plasmodium to mosquitoes necessitates gamete egress from red blood cells to allow zygote formation and ookinete motility to enable penetration of the midgut epithelium. Both processes are dependent on the secretion of proteins from distinct sets of specialized vesicles. Inhibiting some of these proteins has shown potential for blocking parasite transmission to the mosquito. To identify new transmission blocking vaccine candidates, we defined the microneme content from ookinetes of the rodent model organism Plasmodium berghei using APEX2-mediated rapid proximity-dependent biotinylation. Besides known proteins of ookinete micronemes, this identified over 50 novel candidates and sharpened the list of a previous survey based on subcellular fractionation. Functional analysis of a first candidate uncovered a dual role for this membrane protein in male gametogenesis and ookinete midgut traversal. Mutation of a putative trafficking motif in the C-terminus led to its mis-localization in ookinetes and affected ookinete to oocyst transition but not gamete formation. This suggests the existence of distinct functional and transport requirements for Plasmodium proteins in different parasite stages.SignificanceThe genome of the malaria parasite Plasmodium contains over 5500 genes, of which over 30% have no assigned function. Transmission of Plasmodium spp. to the mosquito contains several essential steps that can be inhibited by antibodies or chemical compounds. Yet few proteins involved in these processes are characterized, thus limiting our capacity to generate transmission interfering tools. Here, we establish a method to rapidly identify proteins in a specific compartment within the parasite that is essential for establishment of an infection within the mosquito, and identify over 50 novel candidate proteins. Functional analysis of the top candidate identifies a protein with two independent essential functions in subsequent steps along the Plasmodium life cycle within the mosquito.Highlightsfirst use of APEX based proximity ligation in Apicomplexaidentification of >50 putative ookinete surface proteinsnovel membrane protein essential for microgamete egress and ookinete migrationputative trafficking motif essential in ookinetes but not gametes


2018 ◽  
Author(s):  
Simon Gras ◽  
Elena Jimenez-Ruiz ◽  
Christen M. Klinger ◽  
Leandro Lemgruber ◽  
Markus Meissner

ABSTRACTApicomplexan parasites invade host cells in an active process, involving their ability to move by gliding motility and invasion. While the acto-myosin-system of the parasite plays a crucial role in the formation and release of attachment sites during this process, there are still open questions, such as how the force powering motility is generated. In many eukaryotes a secretory-endocytic cycle leads to recycling of receptors (integrins), necessary to form attachment sites, regulation of surface area during motility and generation of retrograde membrane flow. Here we demonstrate that endocytosis operates during gliding motility in Toxoplasma gondii and appears to be crucial for the establishment of retrograde membrane flow, since inhibition of endocytosis blocks retrograde flow and motility. We identified lysophosphatidic acid (LPA) as a potent stimulator of endocytosis and demonstrate that extracellular parasites can efficiently incorporate exogenous material, such as nanogold particles. Furthermore, we show that surface proteins of the parasite are recycled during this process. Interestingly, the endocytic and secretory pathways of the parasite converge, and endocytosed material is subsequently secreted, demonstrating the operation of an endocytic-secretory cycle. Together our data consolidate previous findings and we propose a novel model that reconciles parasite motility with observations in other eukaryotes: the fountain-flow-model for apicomplexan parasite motility.


2021 ◽  
Vol 22 (13) ◽  
pp. 7099
Author(s):  
Pradeep Kumar Kopparapu ◽  
Meghshree Deshmukh ◽  
Zhicheng Hu ◽  
Majd Mohammad ◽  
Marco Maugeri ◽  
...  

Staphylococcal aureus (S. aureus), a Gram-positive bacteria, is known to cause various infections. Extracellular vesicles (EVs) are a heterogeneous array of membranous structures secreted by cells from all three domains of life, i.e., eukaryotes, bacteria, and archaea. Bacterial EVs are implied to be involved in both bacteria–bacteria and bacteria–host interactions during infections. It is still unclear how S. aureus EVs interact with host cells and induce inflammatory responses. In this study, EVs were isolated from S. aureus and mutant strains deficient in either prelipoprotein lipidation (Δlgt) or major surface proteins (ΔsrtAB). Their immunostimulatory capacities were assessed both in vitro and in vivo. We found that S. aureus EVs induced pro-inflammatory responses both in vitro and in vivo. However, this activity was dependent on lipidated lipoproteins (Lpp), since EVs isolated from the Δlgt showed no stimulation. On the other hand, EVs isolated from the ΔsrtAB mutant showed full immune stimulation, indicating the cell wall anchoring of surface proteins did not play a role in immune stimulation. The immune stimulation of S. aureus EVs was mediated mainly by monocytes/macrophages and was TLR2 dependent. In this study, we demonstrated that not only free Lpp but also EV-imbedded Lpp had high pro-inflammatory activity.


2006 ◽  
Vol 281 (42) ◽  
pp. 31517-31527
Author(s):  
Christian W. Kauth ◽  
Ute Woehlbier ◽  
Michaela Kern ◽  
Zeleke Mekonnen ◽  
Rolf Lutz ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1320
Author(s):  
Yogesh B Narkhede ◽  
Karen J Gonzalez ◽  
Eva-Maria Strauch

The emergence of novel viral infections of zoonotic origin and mutations of existing human pathogenic viruses represent a serious concern for public health. It warrants the establishment of better interventions and protective therapies to combat the virus and prevent its spread. Surface glycoproteins catalyzing the fusion of viral particles and host cells have proven to be an excellent target for antivirals as well as vaccines. This review focuses on recent advances for computational structure-based design of antivirals and vaccines targeting viral fusion machinery to control seasonal and emerging respiratory viruses.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ayushi Chaurasiya ◽  
Swati Garg ◽  
Ashish Khanna ◽  
Chintam Narayana ◽  
Ved Prakash Dwivedi ◽  
...  

AbstractHijacking of host metabolic status by a pathogen for its regulated dissemination from the host is prerequisite for the propagation of infection. M. tuberculosis secretes an NAD+-glycohydrolase, TNT, to induce host necroptosis by hydrolyzing Nicotinamide adenine dinucleotide (NAD+). Herein, we expressed TNT in macrophages and erythrocytes; the host cells for M. tuberculosis and the malaria parasite respectively, and found that it reduced the NAD+ levels and thereby induced necroptosis and eryptosis resulting in premature dissemination of pathogen. Targeting TNT in M. tuberculosis or induced eryptosis in malaria parasite interferes with pathogen dissemination and reduction in the propagation of infection. Building upon our discovery that inhibition of pathogen-mediated host NAD+ modulation is a way forward for regulation of infection, we synthesized and screened some novel compounds that showed inhibition of NAD+-glycohydrolase activity and pathogen infection in the nanomolar range. Overall this study highlights the fundamental importance of pathogen-mediated modulation of host NAD+ homeostasis for its infection propagation and novel inhibitors as leads for host-targeted therapeutics.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jane M. Carlton

AbstractThe study of human malaria caused by species of Plasmodium has undoubtedly been enriched by the use of model systems, such as the rodent malaria parasites originally isolated from African thicket rats. A significant gap in the arsenal of resources of the species that make up the rodent malaria parasites has been the lack of any such tools for the fourth of the species, Plasmodium vinckei. This has recently been rectified by Abhinay Ramaprasad and colleagues, whose pivotal paper published in BMC Biology describes a cornucopia of new P. vinckei ‘omics datasets, mosquito transmission experiments, transfection protocols, and virulence phenotypes, to propel this species firmly into the twenty-first century.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cui Zhang ◽  
Cihan Oguz ◽  
Sue Huse ◽  
Lu Xia ◽  
Jian Wu ◽  
...  

Abstract Background Rodent malaria parasites are important models for studying host-malaria parasite interactions such as host immune response, mechanisms of parasite evasion of host killing, and vaccine development. One of the rodent malaria parasites is Plasmodium yoelii, and multiple P. yoelii strains or subspecies that cause different disease phenotypes have been widely employed in various studies. The genomes and transcriptomes of several P. yoelii strains have been analyzed and annotated, including the lethal strains of P. y. yoelii YM (or 17XL) and non-lethal strains of P. y. yoelii 17XNL/17X. Genomic DNA sequences and cDNA reads from another subspecies P. y. nigeriensis N67 have been reported for studies of genetic polymorphisms and parasite response to drugs, but its genome has not been assembled and annotated. Results We performed genome sequencing of the N67 parasite using the PacBio long-read sequencing technology, de novo assembled its genome and transcriptome, and predicted 5383 genes with high overall annotation quality. Comparison of the annotated genome of the N67 parasite with those of YM and 17X parasites revealed a set of genes with N67-specific orthology, expansion of gene families, particularly the homologs of the Plasmodium chabaudi erythrocyte membrane antigen, large numbers of SNPs and indels, and proteins predicted to interact with host immune responses based on their functional domains. Conclusions The genomes of N67 and 17X parasites are highly diverse, having approximately one polymorphic site per 50 base pairs of DNA. The annotated N67 genome and transcriptome provide searchable databases for fast retrieval of genes and proteins, which will greatly facilitate our efforts in studying the parasite biology and gene function and in developing effective control measures against malaria.


Sign in / Sign up

Export Citation Format

Share Document