scholarly journals Decision letter: A predictive focus of gain modulation encodes target trajectories in insect vision

2017 ◽  
eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Steven D Wiederman ◽  
Joseph M Fabian ◽  
James R Dunbier ◽  
David C O’Carroll

When a human catches a ball, they estimate future target location based on the current trajectory. How animals, small and large, encode such predictive processes at the single neuron level is unknown. Here we describe small target-selective neurons in predatory dragonflies that exhibit localized enhanced sensitivity for targets displaced to new locations just ahead of the prior path, with suppression elsewhere in the surround. This focused region of gain modulation is driven by predictive mechanisms, with the direction tuning shifting selectively to match the target’s prior path. It involves a large local increase in contrast gain which spreads forward after a delay (e.g. an occlusion) and can even transfer between brain hemispheres, predicting trajectories moved towards the visual midline from the other eye. The tractable nature of dragonflies for physiological experiments makes this a useful model for studying the neuronal mechanisms underlying the brain’s remarkable ability to anticipate moving stimuli.


2017 ◽  
Author(s):  
Steven D Wiederman ◽  
Joseph M Fabian ◽  
James R Dunbier ◽  
David C O’Carroll

2021 ◽  
Vol 89 (9) ◽  
pp. S347
Author(s):  
Mark T. Curtis ◽  
Xi Ren ◽  
Vanessa Fishel ◽  
Natasha Torrence ◽  
Yiming Wang ◽  
...  

2021 ◽  
pp. 174702182110248
Author(s):  
Xiaogang Wu ◽  
Aijun Wang ◽  
Ming Zhang

The normalization model of attention (NMoA) predicts that the attention gain pattern is mediated by changes in the size of the attentional field and stimuli. However, existing studies have not measured gain patterns when the relative sizes of stimuli are changed. To investigate the NMoA, the present study manipulated the attentional field size, namely, the exogenous cue size. Moreover, we assessed whether the relative rather than the absolute size of the attentional field matters, either by holding the target size constant and changing the cue size (experiments 1-3) or by holding the cue size constant and changing the target size (experiment 4), in a spatial cueing paradigm of psychophysical procedures. The results show that the gain modulations changed from response gain to contrast gain when the precue size changed from small to large relative to the target size (experiments 1-3). Moreover, when the target size was once again made larger than the precue size, there was still a change in response gain (experiment 4). These results suggest that the size of exogenous cues plays an important role in adjusting the attentional field and that relative changes rather than absolute changes to exogenous cue size determine gain modulation. These results are consistent with the prediction of the NMoA and provide novel insights into gain modulations of visual selective attention.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michelle T. Fountain ◽  
Amir Badiee ◽  
Sebastian Hemer ◽  
Alvaro Delgado ◽  
Michael Mangan ◽  
...  

Abstract Spotted wing drosophila, Drosophila suzukii, is a serious invasive pest impacting the production of multiple fruit crops, including soft and stone fruits such as strawberries, raspberries and cherries. Effective control is challenging and reliant on integrated pest management which includes the use of an ever decreasing number of approved insecticides. New means to reduce the impact of this pest that can be integrated into control strategies are urgently required. In many production regions, including the UK, soft fruit are typically grown inside tunnels clad with polyethylene based materials. These can be modified to filter specific wavebands of light. We investigated whether targeted spectral modifications to cladding materials that disrupt insect vision could reduce the incidence of D. suzukii. We present a novel approach that starts from a neuroscientific investigation of insect sensory systems and ends with infield testing of new cladding materials inspired by the biological data. We show D. suzukii are predominantly sensitive to wavelengths below 405 nm (ultraviolet) and above 565 nm (orange & red) and that targeted blocking of lower wavebands (up to 430 nm) using light restricting materials reduces pest populations up to 73% in field trials.


2017 ◽  
Vol 372 (1717) ◽  
pp. 20160077 ◽  
Author(s):  
Anna Honkanen ◽  
Esa-Ville Immonen ◽  
Iikka Salmela ◽  
Kyösti Heimonen ◽  
Matti Weckström

Night vision is ultimately about extracting information from a noisy visual input. Several species of nocturnal insects exhibit complex visually guided behaviour in conditions where most animals are practically blind. The compound eyes of nocturnal insects produce strong responses to single photons and process them into meaningful neural signals, which are amplified by specialized neuroanatomical structures. While a lot is known about the light responses and the anatomical structures that promote pooling of responses to increase sensitivity, there is still a dearth of knowledge on the physiology of night vision. Retinal photoreceptors form the first bottleneck for the transfer of visual information. In this review, we cover the basics of what is known about physiological adaptations of insect photoreceptors for low-light vision. We will also discuss major enigmas of some of the functional properties of nocturnal photoreceptors, and describe recent advances in methodologies that may help to solve them and broaden the field of insect vision research to new model animals. This article is part of the themed issue ‘Vision in dim light’.


2007 ◽  
Vol 32 (20) ◽  
pp. 3029 ◽  
Author(s):  
Jing Xu ◽  
Xinliang Zhang ◽  
Jianji Dong ◽  
Deming Liu ◽  
Dexiu Huang

Sign in / Sign up

Export Citation Format

Share Document