scholarly journals The kinetoplastid-infecting Bodo saltans virus (BsV), a window into the most abundant giant viruses in the sea

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Christoph M Deeg ◽  
Cheryl-Emiliane T Chow ◽  
Curtis A Suttle

Giant viruses are ecologically important players in aquatic ecosystems that have challenged concepts of what constitutes a virus. Herein, we present the giant Bodo saltans virus (BsV), the first characterized representative of the most abundant group of giant viruses in ocean metagenomes, and the first isolate of a klosneuvirus, a subgroup of the Mimiviridae proposed from metagenomic data. BsV infects an ecologically important microzooplankton, the kinetoplastid Bodo saltans. Its 1.39 Mb genome encodes 1227 predicted ORFs, including a complex replication machinery. Yet, much of its translational apparatus has been lost, including all tRNAs. Essential genes are invaded by homing endonuclease-encoding self-splicing introns that may defend against competing viruses. Putative anti-host factors show extensive gene duplication via a genomic accordion indicating an ongoing evolutionary arms race and highlighting the rapid evolution and genomic plasticity that has led to genome gigantism and the enigma that is giant viruses.

2017 ◽  
Author(s):  
Christoph M. Deeg ◽  
Cheryl-Emiliane T. Chow ◽  
Curtis A. Suttle

AbstractGiant viruses are ecologically important players in aquatic ecosystems that have challenged concepts of what constitutes a virus. Herein, we present the giant Bodo saltans virus (BsV), the first characterized representative of the most abundant giant viruses in the oceans, and the first klosneuvirus isolate, a subgroup of theMimiviridaeproposed from metagenomic data. BsV infects an ecologically important microzooplankton, the kinetoplastidBodo saltans. Its 1.39 Mb genome is the largest described for theMimiviridaeand encodes 1227 predicted ORFs, including pathways for host-independent replication. Yet, much of its translational machinery has been lost, including all tRNAs. Essential genes are invaded by homing endonuclease-encoding self-splicing introns that may defend against competing viruses. Putative anti-host factors show extensive gene duplication via a genomic accordion indicating an ongoing evolutionary arms race and highlighting the rapid evolution and genomic plasticity that has led to genome gigantism and the enigma that is giant viruses.


2019 ◽  
Vol 94 (1) ◽  
Author(s):  
Leena Hussein Bajrai ◽  
Saïd Mougari ◽  
Julien Andreani ◽  
Emeline Baptiste ◽  
Jeremy Delerce ◽  
...  

ABSTRACT The family of giant viruses is still expanding, and evidence of a translational machinery is emerging in the virosphere. The Klosneuvirinae group of giant viruses was first reconstructed from in silico studies, and then a unique member was isolated, Bodo saltans virus. Here we describe the isolation of a new member in this group using coculture with the free-living amoeba Vermamoeba vermiformis. This giant virus, called Yasminevirus, has a 2.1-Mb linear double-stranded DNA genome encoding 1,541 candidate proteins, with a GC content estimated at 40.2%. Yasminevirus possesses a nearly complete translational machinery, with a set of 70 tRNAs associated with 45 codons and recognizing 20 amino acids (aa), 20 aminoacyl-tRNA synthetases (aaRSs) recognizing 20 aa, as well as several translation factors and elongation factors. At the genome scale, evolutionary analyses placed this virus in the Klosneuvirinae group of giant viruses. Rhizome analysis demonstrated that the genome of Yasminevirus is mosaic, with ∼34% of genes having their closest homologues in other viruses, followed by ∼13.2% in Eukaryota, ∼7.2% in Bacteria, and less than 1% in Archaea. Among giant virus sequences, Yasminevirus shared 87% of viral hits with Klosneuvirinae. This description of Yasminevirus sheds light on the Klosneuvirinae group in a captivating quest to understand the evolution and diversity of giant viruses. IMPORTANCE Yasminevirus is an icosahedral double-stranded DNA virus isolated from sewage water by amoeba coculture. Here its structure and replicative cycle in the amoeba Vermamoeba vermiformis are described and genomic and evolutionary studies are reported. This virus belongs to the Klosneuvirinae group of giant viruses, representing the second isolated and cultivated giant virus in this group, and is the first isolated using a coculture procedure. Extended translational machinery pointed to Yasminevirus among the quasiautonomous giant viruses with the most complete translational apparatus of the known virosphere.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 989
Author(s):  
Michael L. Mallory ◽  
Lisa C. Lindesmith ◽  
Paul D. Brewer-Jensen ◽  
Rachel L. Graham ◽  
Ralph S. Baric

Human norovirus (HuNoV) is the leading cause of global infectious acute gastroenteritis, causing ~20% of reported diarrheal episodes. Typically, GII.4 strains cause 50–70% of yearly outbreaks, and pandemic waves of disease approximately every 2–7 years due to rapid evolution. Importantly, GII.4 dominance is occasionally challenged by the sudden emergence of other GII strains, most recently by GII.2 strains which peaked in 2016–2017, dramatically increasing from 1% to 20% of total HuNoV outbreaks. To determine if viral capsid evolution may account for the sudden rise in GII.2 outbreaks, Virus Like Particles (VLPs) of two 2016–2017 GII.2 strains were compared by antigenic and histo blood group antigen (HBGA) binding profiles to the prototypic 1976 GII.2 Snow Mountain Virus (SMV) strain. Despite >50 years of GII.2 strain persistence in human populations, limited sequence diversity and antigenic differences were identified between strains. However, capsid microvariation did affect HBGA binding patterns, with contemporary strains demonstrating decreased avidity for type A saliva. Furthermore, bile salts increased GII.2 VLP avidity for HBGAs, but did not alter antigenicity. These data indicate that large changes in antigenicity or receptor binding are unlikely to explain GII.2 emergence, in contrast to the pandemic GII.4 strains, and indicate that host factors such as waning or remodeling of serum or mucosal immunity likely contributed to the surge in GII.2 prevalence.


2007 ◽  
Vol 189 (14) ◽  
pp. 5293-5301 ◽  
Author(s):  
David Nord ◽  
Eduard Torrents ◽  
Britt-Marie Sjöberg

ABSTRACT The essential Bacillus anthracis nrdE gene carries a self-splicing group I intron with a putative homing endonuclease belonging to the GIY-YIG family. Here, we show that the nrdE pre-mRNA is spliced and that the homing endonuclease cleaves an intronless nrdE gene 5 nucleotides (nt) upstream of the intron insertion site, producing 2-nt 3′ extensions. We also show that the sequence required for efficient cleavage spans at least 4 bp upstream and 31 bp downstream of the cleaved coding strand. The position of the recognition sequence in relation to the cleavage position is as expected for a GIY-YIG homing endonuclease. Interestingly, nrdE genes from several other Bacillaceae were also susceptible to cleavage, with those of Bacillus cereus, Staphylococcus epidermidis (nrdE1), B. anthracis, and Bacillus thuringiensis serovar konkukian being better substrates than those of Bacillus subtilis, Bacillus lichenformis, and S. epidermidis (nrdE2). On the other hand, nrdE genes from Lactococcus lactis, Escherichia coli, Salmonella enterica serovar Typhimurium, and Corynebacterium ammoniagenes were not cleaved. Intervening sequences (IVSs) residing in protein-coding genes are often found in enzymes involved in DNA metabolism, and the ribonucleotide reductase nrdE gene is a frequent target for self-splicing IVSs. A comparison of nrdE genes from seven gram-positive low-G+C bacteria, two bacteriophages, and Nocardia farcinica showed five different insertion sites for self-splicing IVSs within the coding region of the nrdE gene.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 139
Author(s):  
Berati Cerikan ◽  
Sarah Goellner ◽  
Christopher John Neufeldt ◽  
Uta Haselmann ◽  
Mirko Cortese ◽  
...  

Positive-strand RNA viruses, such as dengue virus (DENV), induce the extensive rearrangement of intracellular membranes that serve as a scaffold for the assembly of the viral replication machinery. In the case of DENV, the main endomembrane ultrastructure produced in infected cells consists of invaginations of the endoplasmic reticulum, designated vesicle packets (VPs), which are the assumed sites of viral RNA replication. VPs are observed as arrays of vesicles surrounded by an outer membrane, the formation of which is induced by the viral nonstructural proteins, presumably in conjunction with specific host factors. However, little is known about the mechanisms governing VP formation, which is mainly due to the lack of a replication-independent system supporting the biogenesis of these membranous structures. Here we describe an expression-based, viral RNA replication-independent, DENV polyprotein system, designated as pIRO (plasmid-induced replication organelle), which is sufficient to induce VP formation. We show that VPs induced by pIRO expression are morphologically indistinguishable from those found in infected cells, suggesting that DENV replication organelle formation does not require RNA replication. We conclude that the pIRO system is a novel and valuable tool that can be used to dissect the mechanisms underlying DENV replication organelle formation.


2016 ◽  
Vol 113 (32) ◽  
pp. E4654-E4661 ◽  
Author(s):  
Adit Naor ◽  
Neta Altman-Price ◽  
Shannon M. Soucy ◽  
Anna G. Green ◽  
Yulia Mitiagin ◽  
...  

Inteins are parasitic genetic elements that excise themselves at the protein level by self-splicing, allowing the formation of functional, nondisrupted proteins. Many inteins contain a homing endonuclease (HEN) domain and rely on its activity for horizontal propagation. However, successful invasion of an entire population will make this activity redundant, and the HEN domain is expected to degenerate quickly under these conditions. Several theories have been proposed for the continued existence of the both active HEN and noninvaded alleles within a population. However, to date, these models were not directly tested experimentally. Using the natural cell fusion ability of the halophilic archaeon Haloferax volcanii we were able to examine this question in vivo, by mating polB intein-positive [insertion site c in the gene encoding DNA polymerase B (polB-c)] and intein-negative cells and examining the dispersal efficiency of this intein in a natural, polyploid population. Through competition between otherwise isogenic intein-positive and intein-negative strains we determined a surprisingly high fitness cost of over 7% for the polB-c intein. Our laboratory culture experiments and samples taken from Israel’s Mediterranean coastline show that the polB-c inteins do not efficiently take over an inteinless population through mating, even under ideal conditions. The presence of the HEN/intein promoted recombination when intein-positive and intein-negative cells were mated. Increased recombination due to HEN activity contributes not only to intein dissemination but also to variation at the population level because recombination tracts during repair extend substantially from the homing site.


2021 ◽  
Author(s):  
Constantinos Patinios ◽  
Sjoerd Creutzburg ◽  
Adini Arifah ◽  
Belen Perez ◽  
Colin Ingham ◽  
...  

CRISPR-Cas is a powerful tool for genome editing in bacteria. However, its efficacy is dependent on host factors (such as DNA repair pathways) and/or exogenous expression of recombinases. In this study, we mitigated these constraints by developing a simple and universal genome engineering tool for bacteria which we termed SIBR-Cas (Self-splicing Intron-Based Riboswitch-Cas). SIBR-Cas was generated from a mutant library of the theophylline-dependent self-splicing T4 td intron that allows for universal and inducible control over CRISPR-Cas counterselection. This control delays CRISPR-Cas counterselection, granting more time for the editing event (e.g., by homologous recombination) to occur. Without the use of exogenous recombinases, SIBR-Cas was successfully applied to knock-out several genes in three bacteria with poor homologous recombination systems. Compared to other genome engineering tools, SIBR-Cas is simple, tightly regulated and widely applicable for most (non-model) bacteria. Furthermore, we propose that SIBR can have a wider application as a universal gene expression and gene regulation control mechanism for any gene or RNA of interest in bacteria.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huaihai Chen ◽  
Kayan Ma ◽  
Yu Huang ◽  
Yuchun Yang ◽  
Zilong Ma ◽  
...  

A tight association between microbial function and taxonomy is the basis of functional prediction based on taxonomy, but such associations have been controversial in water biomes largely due to the probable prevalence of functional redundancy. However, previous studies on this topic used a relatively coarse resolution of ecosystem functioning, potentially inflating the estimated functional redundancy. Thus, a comprehensive evaluation of the association between high-resolution functional traits and taxonomic diversity obtained from fresh and saline water metagenomic data is urgently needed. Here, we examined 938 functionally and taxonomically annotated water metagenomes obtained worldwide to scrutinize the connection between function and taxonomy, and to identify the key driver of water metagenomes function or taxonomic composition at a global scale. We found that pairwise similarity of function was significantly associated with taxonomy, though taxonomy had higher global dissimilarity than function. Classification into six water biomes resulted in greater variation in taxonomic compositions than functional profiles, as the key regulating factor was salinity. Fresh water microbes harbored distinct functional and taxonomic structures from microbes in saline water biomes, despite that taxonomy was more susceptible to gradient of geography and climate than function. In summary, our results find a significant relationship between taxonomic diversity and microbial functioning in global water metagenomes, although microbial taxonomic compositions vary to a larger extent than functional profiles in aquatic ecosystems, suggesting the possibility and necessity for functional prediction of microorganisms based on taxonomy in global aquatic ecosystems.


Sign in / Sign up

Export Citation Format

Share Document