scholarly journals Real-time classification of experience-related ensemble spiking patterns for closed-loop applications

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Davide Ciliberti ◽  
Frédéric Michon ◽  
Fabian Kloosterman

Communication in neural circuits across the cortex is thought to be mediated by spontaneous temporally organized patterns of population activity lasting ~50 –200 ms. Closed-loop manipulations have the unique power to reveal direct and causal links between such patterns and their contribution to cognition. Current brain–computer interfaces, however, are not designed to interpret multi-neuronal spiking patterns at the millisecond timescale. To bridge this gap, we developed a system for classifying ensemble patterns in a closed-loop setting and demonstrated its application in the online identification of hippocampal neuronal replay sequences in the rat. Our system decodes multi-neuronal patterns at 10 ms resolution, identifies within 50 ms experience-related patterns with over 70% sensitivity and specificity, and classifies their content with 95% accuracy. This technology scales to high-count electrode arrays and will help to shed new light on the contribution of internally generated neural activity to coordinated neural assembly interactions and cognition.

2021 ◽  
Vol 11 (11) ◽  
pp. 4922
Author(s):  
Tengfei Ma ◽  
Wentian Chen ◽  
Xin Li ◽  
Yuting Xia ◽  
Xinhua Zhu ◽  
...  

To explore whether the brain contains pattern differences in the rock–paper–scissors (RPS) imagery task, this paper attempts to classify this task using fNIRS and deep learning. In this study, we designed an RPS task with a total duration of 25 min and 40 s, and recruited 22 volunteers for the experiment. We used the fNIRS acquisition device (FOIRE-3000) to record the cerebral neural activities of these participants in the RPS task. The time series classification (TSC) algorithm was introduced into the time-domain fNIRS signal classification. Experiments show that CNN-based TSC methods can achieve 97% accuracy in RPS classification. CNN-based TSC method is suitable for the classification of fNIRS signals in RPS motor imagery tasks, and may find new application directions for the development of brain–computer interfaces (BCI).


Leonardo ◽  
2009 ◽  
Vol 42 (5) ◽  
pp. 439-442 ◽  
Author(s):  
Eduardo R. Miranda ◽  
John Matthias

Music neurotechnology is a new research area emerging at the crossroads of neurobiology, engineering sciences and music. Examples of ongoing research into this new area include the development of brain-computer interfaces to control music systems and systems for automatic classification of sounds informed by the neurobiology of the human auditory apparatus. The authors introduce neurogranular sampling, a new sound synthesis technique based on spiking neuronal networks (SNN). They have implemented a neurogranular sampler using the SNN model developed by Izhikevich, which reproduces the spiking and bursting behavior of known types of cortical neurons. The neurogranular sampler works by taking short segments (or sound grains) from sound files and triggering them when any of the neurons fire.


2017 ◽  
Vol 27 (08) ◽  
pp. 1750033 ◽  
Author(s):  
Alborz Rezazadeh Sereshkeh ◽  
Robert Trott ◽  
Aurélien Bricout ◽  
Tom Chau

Brain–computer interfaces (BCIs) for communication can be nonintuitive, often requiring the performance of hand motor imagery or some other conversation-irrelevant task. In this paper, electroencephalography (EEG) was used to develop two intuitive online BCIs based solely on covert speech. The goal of the first BCI was to differentiate between 10[Formula: see text]s of mental repetitions of the word “no” and an equivalent duration of unconstrained rest. The second BCI was designed to discern between 10[Formula: see text]s each of covert repetition of the words “yes” and “no”. Twelve participants used these two BCIs to answer yes or no questions. Each participant completed four sessions, comprising two offline training sessions and two online sessions, one for testing each of the BCIs. With a support vector machine and a combination of spectral and time-frequency features, an average accuracy of [Formula: see text] was reached across participants in the online classification of no versus rest, with 10 out of 12 participants surpassing the chance level (60.0% for [Formula: see text]). The online classification of yes versus no yielded an average accuracy of [Formula: see text], with eight participants exceeding the chance level. Task-specific changes in EEG beta and gamma power in language-related brain areas tended to provide discriminatory information. To our knowledge, this is the first report of online EEG classification of covert speech. Our findings support further study of covert speech as a BCI activation task, potentially leading to the development of more intuitive BCIs for communication.


2021 ◽  
Author(s):  
Yu Wai Chau

In order to investigate gestural behavior during human-computer interactions, an investigation into the designs of current interaction methods is conducted. This information is then compared to current emerging databases to observe if the gesture designs follow guidelines discovered in the above investigation. The comparison will also observe common trends in the currently developed gesture databases such as similar gesture for specific commands. In order to investigate gestural behavior during interactions with computer interfaces, an experiment has been devised to observe and record gestures in use for gesture databases through the use of a hardware sensor device. It was discovered that factors such as opposing adjacent fingers and gestures that simulated object manipulation are factors in user comfort. The results of this study will create guidelines for creating new gestures for hand gesture interfaces.


2017 ◽  
Author(s):  
Venkatesh Elango ◽  
Aashish N Patel ◽  
Kai J Miller ◽  
Vikash Gilja

AbstractA fundamental challenge in designing brain-computer interfaces (BCIs) is decoding behavior from time-varying neural oscillations. in typical applications, decoders are constructed for individual subjects and with limited data leading to restrictions on the types of models that can be utilized. currently, the best performing decoders are typically linear models capable of utilizing rigid timing constraints with limited training data. Here we demonstrate the use of Long Short-Term Memory (LSTM) networks to take advantage of the temporal information present in sequential neural data collected from subjects implanted with electrocorticographic (ECoG) electrode arrays performing a finger flexion task. our constructed models are capable of achieving accuracies that are comparable to existing techniques while also being robust to variation in sample data size. Moreover, we utilize the LSTM networks and an affine transformation layer to construct a novel architecture for transfer learning. We demonstrate that in scenarios where only the affine transform is learned for a new subject, it is possible to achieve results comparable to existing state-of-the-art techniques. The notable advantage is the increased stability of the model during training on novel subjects. Relaxing the constraint of only training the affine transformation, we establish our model as capable of exceeding performance of current models across all training data sizes. Overall, this work demonstrates that LSTMS are a versatile model that can accurately capture temporal patterns in neural data and can provide a foundation for transfer learning in neural decoding.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hamed Zaer ◽  
Ashlesha Deshmukh ◽  
Dariusz Orlowski ◽  
Wei Fan ◽  
Pierre-Hugues Prouvot ◽  
...  

Recording and manipulating neuronal ensemble activity is a key requirement in advanced neuromodulatory and behavior studies. Devices capable of both recording and manipulating neuronal activity brain-computer interfaces (BCIs) should ideally operate un-tethered and allow chronic longitudinal manipulations in the freely moving animal. In this study, we designed a new intracortical BCI feasible of telemetric recording and stimulating local gray and white matter of visual neural circuit after irradiation exposure. To increase the translational reliance, we put forward a Göttingen minipig model. The animal was stereotactically irradiated at the level of the visual cortex upon defining the target by a fused cerebral MRI and CT scan. A fully implantable neural telemetry system consisting of a 64 channel intracortical multielectrode array, a telemetry capsule, and an inductive rechargeable battery was then implanted into the visual cortex to record and manipulate local field potentials, and multi-unit activity. We achieved a 3-month stability of the functionality of the un-tethered BCI in terms of telemetric radio-communication, inductive battery charging, and device biocompatibility for 3 months. Finally, we could reliably record the local signature of sub- and suprathreshold neuronal activity in the visual cortex with high bandwidth without complications. The ability to wireless induction charging combined with the entirely implantable design, the rather high recording bandwidth, and the ability to record and stimulate simultaneously put forward a wireless BCI capable of long-term un-tethered real-time communication for causal preclinical circuit-based closed-loop interventions.


2021 ◽  
Author(s):  
Brett W. Larsen ◽  
Shaul Druckmann

AbstractLateral and recurrent connections are ubiquitous in biological neural circuits. The strong computational abilities of feedforward networks have been extensively studied; on the other hand, while certain roles for lateral and recurrent connections in specific computations have been described, a more complete understanding of the role and advantages of recurrent computations that might explain their prevalence remains an important open challenge. Previous key studies by Minsky and later by Roelfsema argued that the sequential, parallel computations for which recurrent networks are well suited can be highly effective approaches to complex computational problems. Such “tag propagation” algorithms perform repeated, local propagation of information and were introduced in the context of detecting connectedness, a task that is challenging for feedforward networks. Here, we advance the understanding of the utility of lateral and recurrent computation by first performing a large-scale empirical study of neural architectures for the computation of connectedness to explore feedforward solutions more fully and establish robustly the importance of recurrent architectures. In addition, we highlight a tradeoff between computation time and performance and demonstrate hybrid feedforward/recurrent models that perform well even in the presence of varying computational time limitations. We then generalize tag propagation architectures to multiple, interacting propagating tags and demonstrate that these are efficient computational substrates for more general computations by introducing and solving an abstracted biologically inspired decision-making task. More generally, our work clarifies and expands the set of computational tasks that can be solved efficiently by recurrent computation, yielding hypotheses for structure in population activity that may be present in such tasks.Author SummaryLateral and recurrent connections are ubiquitous in biological neural circuits; intriguingly, this stands in contrast to the majority of current-day artificial neural network research which primarily uses feedforward architectures except in the context of temporal sequences. This raises the possibility that part of the difference in computational capabilities between real neural circuits and artificial neural networks is accounted for by the role of recurrent connections, and as a result a more detailed understanding of the computational role played by such connections is of great importance. Making effective comparisons between architectures is a subtle challenge, however, and in this paper we leverage the computational capabilities of large-scale machine learning to robustly explore how differences in architectures affect a network’s ability to learn a task. We first focus on the task of determining whether two pixels are connected in an image which has an elegant and efficient recurrent solution: propagate a connected label or tag along paths. Inspired by this solution, we show that it can be generalized in many ways, including propagating multiple tags at once and changing the computation performed on the result of the propagation. To illustrate these generalizations, we introduce an abstracted decision-making task related to foraging in which an animal must determine whether it can avoid predators in a random environment. Our results shed light on the set of computational tasks that can be solved efficiently by recurrent computation and how these solutions may appear in neural activity.


Author(s):  
Caleb Scheffer Sponheim ◽  
Vasileios Papadourakis ◽  
Jennifer Collinger ◽  
John Downey ◽  
Jeffrey M Weiss ◽  
...  

Abstract Objective. Microelectrode arrays are standard tools for conducting chronic electrophysiological experiments, allowing researchers to simultaneously record from large numbers of neurons. Specifically, Utah electrode arrays (UEAs) have been utilized by scientists in many species, including rodents, rhesus macaques, marmosets, and human participants. The field of clinical human brain-computer interfaces currently relies on the UEA as a number of research groups have FDA clearance for this device through the investigational device exemption pathway. Despite its widespread usage in systems neuroscience, few studies have comprehensively evaluated the reliability and signal quality of the Utah array over long periods of time in a large dataset. Approach. We collected and analyzed over 6000 recorded datasets from various cortical areas spanning almost 9 years of experiments, totaling 17 rhesus macaques (Macaca Mulatta) and 2 human subjects, and 55 separate microelectrode Utah arrays. The scale of this dataset allowed us to evaluate the average life of these arrays, based primarily on the signal-to-noise ratio of each electrode over time. Main Results. Using implants in primary motor, premotor, prefrontal, and somatosensory cortices, we found that the average lifespan of available recordings from UEAs was 622 days, although we provide several examples of these UEAs lasting over 1000 days and one up to 9 years; human implants were also shown to last longer than non-human primate implants. We also found that electrode length did not affect longevity and quality, but iridium oxide metallization on the electrode tip exhibited superior yield as compared to platinum metallization.


Sign in / Sign up

Export Citation Format

Share Document