scholarly journals Peptidoglycan precursor synthesis along the sidewall of pole-growing mycobacteria

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Alam García-Heredia ◽  
Amol Arunrao Pohane ◽  
Emily S Melzer ◽  
Caleb R Carr ◽  
Taylor J Fiolek ◽  
...  

Rod-shaped mycobacteria expand from their poles, yet d-amino acid probes label cell wall peptidoglycan in this genus at both the poles and sidewall. We sought to clarify the metabolic fates of these probes. Monopeptide incorporation was decreased by antibiotics that block peptidoglycan synthesis or l,d-transpeptidation and in an l,d-transpeptidase mutant. Dipeptides complemented defects in d-alanine synthesis or ligation and were present in lipid-linked peptidoglycan precursors. Characterizing probe uptake pathways allowed us to localize peptidoglycan metabolism with precision: monopeptide-marked l,d-transpeptidase remodeling and dipeptide-marked synthesis were coincident with mycomembrane metabolism at the poles, septum and sidewall. Fluorescent pencillin-marked d,d-transpeptidation around the cell perimeter further suggested that the mycobacterial sidewall is a site of cell wall assembly. While polar peptidoglycan synthesis was associated with cell elongation, sidewall synthesis responded to cell wall damage. Peptidoglycan editing along the sidewall may support cell wall robustness in pole-growing mycobacteria.

2018 ◽  
Author(s):  
Alam García-Heredia ◽  
Amol Arunrao Pohane ◽  
Emily S. Melzer ◽  
Caleb R. Carr ◽  
Taylor J. Fiolek ◽  
...  

Abstractd-amino acid probes label cell wall peptidoglycan at both the poles and sidewall of pole-growing mycobacteria. Since peptidoglycan assembly along the cell periphery could provide a rapid, growth-independent means by which to edit the cell wall, we sought to clarify the precise metabolic fates of these probes.d-amino acid monopeptides were incorporated into peptidoglycan byl,d-transpeptidase remodeling enzymes to varying extents. Dipeptides were incorporated into cytoplasmic precursors. While dipeptide-marked peptidoglycan synthesis at the poles was associated with cell elongation, synthesis along the periphery was highly responsive to cell wall damage. Our observations suggest a post-expansion role for peptidoglycan assembly along the mycobacterial sidewall and provide a conceptual framework for understanding cell wall robustness in the face of polar growth.


2008 ◽  
Vol 190 (22) ◽  
pp. 7579-7583 ◽  
Author(s):  
Antje Marie Hempel ◽  
Sheng-bing Wang ◽  
Michal Letek ◽  
José A. Gil ◽  
Klas Flärdh

ABSTRACT Time-lapse imaging of Streptomyces hyphae revealed foci of the essential protein DivIVA at sites where lateral branches will emerge. Overexpression experiments showed that DivIVA foci can trigger establishment of new zones of cell wall assembly, suggesting a key role of DivIVA in directing peptidoglycan synthesis and cell shape in Streptomyces.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Cara C Boutte ◽  
Christina E Baer ◽  
Kadamba Papavinasasundaram ◽  
Weiru Liu ◽  
Michael R Chase ◽  
...  

Regulation of cell wall assembly is essential for bacterial survival and contributes to pathogenesis and antibiotic tolerance in Mycobacterium tuberculosis (Mtb). However, little is known about how the cell wall is regulated in stress. We found that CwlM, a protein homologous to peptidoglycan amidases, coordinates peptidoglycan synthesis with nutrient availability. Surprisingly, CwlM is sequestered from peptidoglycan (PG) by localization in the cytoplasm, and its enzymatic function is not essential. Rather, CwlM is phosphorylated and associates with MurA, the first enzyme in PG precursor synthesis. Phosphorylated CwlM activates MurA ~30 fold. CwlM is dephosphorylated in starvation, resulting in lower MurA activity, decreased cell wall metabolism, and increased tolerance to multiple antibiotics. A phylogenetic analysis of cwlM implies that localization in the cytoplasm drove the evolution of this factor. We describe a system that controls cell wall metabolism in response to starvation, and show that this regulation contributes to antibiotic tolerance.


2019 ◽  
Author(s):  
Alam García-Heredia ◽  
Takehiro Kado ◽  
Caralyn E. Sein ◽  
Julia Puffal ◽  
Sarah H. Osman ◽  
...  

AbstractMany antibiotics target the assembly of cell wall peptidoglycan, an essential, heteropolymeric mesh that encases most bacteria. Different species have characteristic subcellular sites of peptidoglycan synthesis that they must carefully maintain for surface integrity and, ultimately, viability. In rod-shaped bacteria, cell wall elongation is spatially precise yet relies on a limited pool of lipid-linked precursors that generate and are attracted to membrane disorder. By tracking enzymes, substrates and products of peptidoglycan biosynthesis in Mycobacterium smegmatis, we show that precursors are made in plasma membrane domains that are laterally and biochemically distinct from sites of cell wall assembly. Membrane partitioning is required for robust, orderly peptidoglycan synthesis, indicating that these domains help template peptidoglycan synthesis. The cell wall-organizing protein DivIVA and the cell wall itself are essential for domain homeostasis. Thus, the peptidoglycan polymer feeds back on its membrane template to maintain an environment conducive to directional synthesis. We further show that our findings are applicable to rod-shaped bacteria that are phylogenetically distant from M. smegmatis, demonstrating that horizontal compartmentalization of precursors is a general feature of bacillary cell wall biogenesis.


2019 ◽  
Author(s):  
Sara B. Hernández ◽  
Tobias Dörr ◽  
Matthew K. Waldor ◽  
Felipe Cava

ABSTRACTThe bacterial cell wall is made of peptidoglycan (PG), a polymer that is essential for maintenance of cell shape and survival. During growth, bacteria remodel their PG, releasing fragments that are predominantly re-internalized by the cell, where they are recycled for synthesis of new PG. Although the PG recycling pathway is widely conserved, its components are not essential and its roles in cell wall homeostasis are not well-understood. Here, we identified LdcV, a Vibrio cholerae L,D-carboxypeptidase that cleaves the terminal D-Alanine from recycled murotetrapeptides. In the absence of ldcV, recycled tetrapeptides accumulated in the cytosol, leading to two toxic consequences for the cell wall. First, incorporation of tetrapeptide-containing PG precursors into the cell wall led to reduction in D,D-cross-linkage between stem peptides, diminishing PG integrity. Second, tetrapeptide accumulation led to a decrease in canonical UDP-pentapeptide precursors, reducing PG synthesis. Thus, LdcV and the recycling pathway promote optimal cell wall assembly and composition. Furthermore, Ldc substrate preference for murotetrapeptides containing canonical (D-Alanine) vs. non-canonical (D-Methionine) D-amino acids is conserved, suggesting that accumulation of tetrapeptide recycling intermediates may modulate PG homeostasis in environments enriched in non-canonical-muropeptides via substrate competition.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alam García-Heredia ◽  
Takehiro Kado ◽  
Caralyn E Sein ◽  
Julia Puffal ◽  
Sarah H Osman ◽  
...  

Many antibiotics target the assembly of cell wall peptidoglycan, an essential, heteropolymeric mesh that encases most bacteria. In rod-shaped bacteria, cell wall elongation is spatially precise yet relies on limited pools of lipid-linked precursors that generate and are attracted to membrane disorder. By tracking enzymes, substrates, and products of peptidoglycan biosynthesis in Mycobacterium smegmatis, we show that precursors are made in plasma membrane domains that are laterally and biochemically distinct from sites of cell wall assembly. Membrane partitioning likely contributes to robust, orderly peptidoglycan synthesis, suggesting that these domains help template peptidoglycan synthesis. The cell wall-organizing protein DivIVA and the cell wall itself promote domain homeostasis. These data support a model in which the peptidoglycan polymer feeds back on its membrane template to maintain an environment conducive to directional synthesis. Our findings are applicable to rod-shaped bacteria that are phylogenetically distant from M. smegmatis, indicating that horizontal compartmentalization of precursors may be a general feature of bacillary cell wall biogenesis.


Yeast ◽  
2021 ◽  
Author(s):  
Qingguo Guo ◽  
Na Meng ◽  
Guanzhi Fan ◽  
Dong Sun ◽  
Yuan Meng ◽  
...  

Biology ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 225
Author(s):  
Agata Leszczuk ◽  
Justyna Cybulska ◽  
Tomasz Skrzypek ◽  
Artur Zdunek

Arabinogalactan proteins (AGPs) are constituents of the cell wall–plasma membrane continuum in fruit tissue. The aim of the study was to characterise AGPs contained in fruit by determination of their chemical structure and morphological properties. The results were obtained from in and ex situ investigations and a comparative analysis of AGPs present in Malus × domestica fruit at different stages of ripening from green fruit through the mature stage to over-ripening during fruit storage. The HPLC and colorimetric methods were used for analyses of the composition of monosaccharides and proteins in AGPs extracted from fruit. We have found that AGPs from fruit mainly consists of carbohydrate chains composed predominantly of arabinose, galactose, glucose, galacturonic acid, and xylose. The protein moiety accounts for 3.15–4.58%, which depends on the various phases of ripening. Taken together, our results show that the structural and morphological properties of AGPs and calcium concentration in AGPs are related to the progress of ripening, which is correlated with proper fruit cell wall assembly. In line with the existing knowledge, our data confirmed the typical carbohydrate composition of AGPs and may be the basis for studies regarding their presumed properties of binding calcium ions.


Sign in / Sign up

Export Citation Format

Share Document