scholarly journals Nephron progenitor commitment is a stochastic process influenced by cell migration

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Kynan T Lawlor ◽  
Luke Zappia ◽  
James Lefevre ◽  
Joo-Seop Park ◽  
Nicholas A Hamilton ◽  
...  

Progenitor self-renewal and differentiation is often regulated by spatially restricted cues within a tissue microenvironment. Here, we examine how progenitor cell migration impacts regionally induced commitment within the nephrogenic niche in mice. We identify a subset of cells that express Wnt4, an early marker of nephron commitment, but migrate back into the progenitor population where they accumulate over time. Single cell RNA-seq and computational modelling of returning cells reveals that nephron progenitors can traverse the transcriptional hierarchy between self-renewal and commitment in either direction. This plasticity may enable robust regulation of nephrogenesis as niches remodel and grow during organogenesis.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Lori L O'Brien ◽  
Alexander N Combes ◽  
Kieran M Short ◽  
Nils O Lindström ◽  
Peter H Whitney ◽  
...  

A normal endowment of nephrons in the mammalian kidney requires a balance of nephron progenitor self-renewal and differentiation throughout development. Here, we provide evidence for a novel action of ureteric branch tip-derived Wnt11 in progenitor cell organization and interactions within the nephrogenic niche, ultimately determining nephron endowment. In Wnt11 mutants, nephron progenitors dispersed from their restricted niche, intermixing with interstitial progenitors. Nephron progenitor differentiation was accelerated, kidneys were significantly smaller, and the nephron progenitor pool was prematurely exhausted, halving the final nephron count. Interestingly, RNA-seq revealed no significant differences in gene expression. Live imaging of nephron progenitors showed that in the absence of Wnt11 they lose stable attachments to the ureteric branch tips, continuously detaching and reattaching. Further, the polarized distribution of several markers within nephron progenitors is disrupted. Together these data highlight the importance of Wnt11 signaling in directing nephron progenitor behavior which determines a normal nephrogenic program.


2021 ◽  
Vol 32 (11) ◽  
pp. 2815-2833
Author(s):  
Jun Li ◽  
Jinshu Xu ◽  
Huihui Jiang ◽  
Ting Zhang ◽  
Aarthi Ramakrishnan ◽  
...  

BackgroundEya1 is a critical regulator of nephron progenitor cell specification and interacts with Six2 to promote NPC self-renewal. Haploinsufficiency of these genes causes kidney hypoplasia. However, how the Eya1-centered network operates remains unknown.MethodsWe engineered a 2×HA-3×Flag-Eya1 knock-in mouse line and performed coimmunoprecipitation with anti-HA or -Flag to precipitate the multitagged-Eya1 and its associated proteins. Loss-of-function, transcriptome profiling, and genome-wide binding analyses for Eya1's interacting chromatin-remodeling ATPase Brg1 were carried out. We assayed the activity of the cis-regulatory elements co-occupied by Brg1/Six2 in vivo.ResultsEya1 and Six2 interact with the Brg1-based SWI/SNF complex during kidney development. Knockout of Brg1 results in failure of metanephric mesenchyme formation and depletion of nephron progenitors, which has been linked to loss of Eya1 expression. Transcriptional profiling shows conspicuous downregulation of important regulators for nephrogenesis in Brg1-deficient cells, including Lin28, Pbx1, and Dchs1-Fat4 signaling, but upregulation of podocyte lineage, oncogenic, and cell death–inducing genes, many of which Brg1 targets. Genome-wide binding analysis identifies Brg1 occupancy to a distal enhancer of Eya1 that drives nephron progenitor–specific expression. We demonstrate that Brg1 enrichment to two distal intronic enhancers of Pbx1 and a proximal promoter region of Mycn requires Six2 activity and that these Brg1/Six2-bound enhancers govern nephron progenitor–specific expression in response to Six2 activity.ConclusionsOur results reveal an essential role for Brg1, its downstream pathways, and its interaction with Eya1-Six2 in mediating the fine balance among the self-renewal, differentiation, and survival of nephron progenitors.


2020 ◽  
Author(s):  
Eric Brunskill ◽  
Alison Jarmas ◽  
Praneet Chaturvedi ◽  
Raphael Kopan

AbstractMammalian nephron endowment is determined by the coordinated cessation of nephrogenesis in independent niches. Here we report that in young niches, cellular Wnt agonists are poorly translated, Fgf20 levels are high and R-spondin levels are low, resulting in a pro self-renewal environment. By contrast, older niches are low in Fgf20 and high in R-spondin, with increased cellular translation of Wnt agonists, including the signalosome-promoting Tmem59. This suggests a hypothesis that the tipping point for nephron progenitor exit from the niche is controlled by the gradual increase in stability and clustering of Wnt/Fzd complexes in individual cells, enhancing the response to ureteric bud-derived Wnt9b inputs and driving differentiation. We show Tsc1 hemizygosity differentially promoted translation of Wnt antagonists over agonists, expanding a transitional (Six2+, Cited1+, Wnt4+) state and delaying the tipping point. As predicted by these findings, reducing Rspo3 dosage in nephron progenitors or Tmem59 globally increased nephron numbers in vivo.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alison E. Jarmas ◽  
Eric W. Brunskill ◽  
Praneet Chaturvedi ◽  
Nathan Salomonis ◽  
Raphael Kopan

AbstractMammalian nephron endowment is determined by the coordinated cessation of nephrogenesis in independent niches. Here we report that translatome analysis in Tsc1+/− nephron progenitor cells from mice with elevated nephron numbers reveals how differential translation of Wnt antagonists over agonists tips the balance between self-renewal and differentiation. Wnt agonists are poorly translated in young niches, resulting in an environment with low R-spondin and high Fgf20 promoting self-renewal. In older niches we find increased translation of Wnt agonists, including R-spondin and the signalosome-promoting Tmem59, and low Fgf20, promoting differentiation. This suggests that the tipping point for nephron progenitor exit from the niche is controlled by the gradual increase in stability and possibly clustering of Wnt/Fzd complexes in individual cells, enhancing the response to ureteric bud-derived Wnt9b inputs and driving synchronized differentiation. As predicted by these findings, removing one Rspo3 allele in nephron progenitors delays cessation and increases nephron numbers in vivo.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4315-4315
Author(s):  
Ashley N. Kamimae-Lanning ◽  
Natalya A. Goloviznina ◽  
Stephanie M. Krasnow ◽  
Daniel L. Marks ◽  
Peter Kurre

Abstract Evidence in several organ systems demonstrates that pregnancy presents a window of vulnerability for establishing a foundation for health or chronic disease. Overnutrition and the complex metabolic changes that can accompany it can result in permanent phenotypic changes and a predisposition to metabolic syndrome, inflammatory or immune-mediated diseases. We previously reported that prenatal overnutrition stunted fetal liver size. Herein, we hypothesize that this might perturb hematopoietic stem and progenitor cell (HSPC) expansion. To test the effects of a high-fat diet (HFD) and maternal obesity on offspring hematopoiesis, we used a mouse model of diet-induced obesity, feeding female mice a HFD or control diet starting at 5-7 weeks of age and keeping them on the respective diet during subsequent breeding and pregnancy. We then studied offspring at gestational day 14.5 by immunophenotyping, gene expression analysis, qRT-PCR, and transplantation. Fetal livers from HFD offspring had 51% fewer c-Kit+ Sca-1+ Linlo/- and 27% fewer AA4.1+ Sca-1+ Linlo/- (ASL) hematopoietic stem and progenitor cells (HSPC) than controls. This restriction in HSPC numbers was not due to apoptosis or increased reactive oxygen species, as tested by flow cytometry. To determine whether there might be an increase in hematopoietic differentiation to account for relative HSPC deficiencies in HFD livers, we examined hematopoietic lineage subsets. HFD fetal livers had a relative increase in myeloid (Gr-1+/Ter119+) and B220+ lymphoid cells, with comparable proportion of CD3+ cells to controls. Taken together, these results suggest that chronic HFD fetal programming skews fetal liver HSPCs toward differentiation. When we examined global gene expression of male HFD fetal livers versus controls by RNA-seq, we found differential expression of 125 genes. Among the upregulated transcripts, several were involved in hematopoietic regulation, stress response, and HSPC migration. We then used qRT-PCR to test for expression of several of these genes, along with genes critically involved in fetal HSPC self-renewal, within an HSPC-enriched (Sca-1+) population of chronic HFD fetal liver cells. As in RNA-seq, Matrixmetalloproteinase-8 and 9 (Mmp8, Mmp9), which are involved in cell mobilization, were upregulated in HFD-programmed cells. Early growth response-1 (Egr-1) was downregulated as well, further suggesting premature migration of HSPCs from HFD fetal liver. Hmga2, which is implicated in fetal stem cell self-renewal, and its direct target, Igf2bp2, were significantly downregulated in chronic HFD Sca-1+ cells. Along with the immunophenotyping data, these findings suggest that maternal obesity and HFD bias HSPCs toward differentiation, at the expense of self-renewal. To dissect the direct metabolic impact, we studied fetal livers from timed pregnancy cohorts after acute HFD exposure or diet reversal in obese dams, which partially ameliorated several molecular and immunophenotypic endpoints. Finally, we performed a functional test of chronic HFD fetal liver cells by transplantation. A non-competitive transplant into irradiated male recipients yielded no difference in chimerism between HFD or control fetal liver-engrafted animals. Next, we preconditioned a cohort of female and male animals on HFD (or control diet) for 11 weeks, irradiated them, and then competitively transplanted them with a 1:1 ratio of HFD and control fetal liver cells. HFD-programmed fetal liver HSPCs engrafted HFD-conditioned male recipients at significantly lower rates than in HFD-conditioned female or control recipients of either sex. HFD-programmed donor cells retained the significant bias toward the myeloid (Gr-1+/Mac-1+) lineage, noted in the primary graft cells, and away from the B220+ B cell lineage in HFD-conditioned males. In aggregate, prenatal HFD and maternal obesity suppress self-renewal in favor of HSPC differentiation during a time of critical developmental expansion. This suggests an HSPC defect that appears at least partly specified by the stem cell microenvironment. Our work is the first to demonstrate metabolic vulnerability of the hematopoietic stem and progenitor cell compartment and establishes the hematopoietic system as a target for in utero developmental programming. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 28 (11) ◽  
pp. 3323-3335 ◽  
Author(s):  
Jiao Liu ◽  
Francesca Edgington-Giordano ◽  
Courtney Dugas ◽  
Anna Abrams ◽  
Prasad Katakam ◽  
...  

2021 ◽  
Author(s):  
Caixia Jin ◽  
Qingjian Ou ◽  
Jie Chen ◽  
Tao Wang ◽  
Jieping Zhang ◽  
...  

Abstract Purpose: Autophagy is a key regulator of stem cell quiescence and self-renewal, especially in mesenchymal stem cells but related research on neural retinal stem cells is still limited. We are aimed to explore the function and mechanism of autophagy in the neural retinal stem cell.Methods: The published single cell sequencing data was involved to analysis the expression time course of IFITM3 in the mouse neural retinal progenitor cells (mNRPCs). The RNA interference was used to knock down the expression of IFITM3 in the mNRPCs. And the normal mNRPCs and mNRPCs with knockdown of IFITM3 were analysis with the CCK8 for the cell viability, RNA-seq for the mRNA expression, real-time quantitative PCR, immunofluorescence assay for the location of relative proteins, western blot for the levels of relative proteins and autophagy flux assay.Results: This study showed the mNRPCs in vivo and in vitro high expressed IFITM3 which are expressed in the mNRPCs. The proliferation of mNRPCs was greatly inhibited, and cell viability was greatly reduced after IFITM3 knockdown. Moreover, RNA-seq analysis showed that lysosomes were significant changed after IFITM3 knockdown. When cells were treated with rapamycin (RAMP), lysosome activation and agglomeration were evident in all groups. However, there was no significant difference between IFITM3 knockdown groups. The expression of LAMP1 was significantly increased, accompanied by increased lysosome agglomeration, in RAMP-treated cells and especially in IFITM3-knockdown cells. Further detection showed that SQSTM1/p62, HSC70 and LAMP-2A were upregulated, while there was no significant difference in LC3A/B expression, which demonstrated that the MA pathway was not activated but the CMA pathway was activated when knockdown of IFITM3. Conclusion: Our findings indicate that IFITM3 participates in regulating mNRPC viability and proliferation mainly through the CMA pathway, indicating that IFITM3 plays a significant role in maintaining the homeostasis of progenitor cell self-renewal by sustaining low-level activation of the CMA pathway to eliminate factors that are deleterious to cells and acts as a very important protector of RPCs.


2020 ◽  
Author(s):  
Hao Li ◽  
Jussi Kupari ◽  
Yujuan Gui ◽  
Edward Siefker ◽  
Benson Lu ◽  
...  

ABSTRACTDue to poor regenerative capacity of adult kidneys, nephron endowment defined by the nephrogenic program during the fetal period dictates renal and related cardiovascular health throughout life. We show that the neurotropic factor GDNF, which is in clinical trials for Parkinson’s disease, is capable of prolonging the nephrogenic program beyond its normal cessation without increasing the risk of kidney tumors. Our data demonstrates that excess GDNF expands the nephrogenic program by maintaining nephron progenitors and nephrogenesis in postnatal mouse kidneys. GDNF, through its transcriptional targets excreted from the adjacent epithelium, has a major effect on nephron progenitor self-renewal and maintenance; abnormally high GDNF inhibits nephron progenitor proliferation, but lowering its level normalizes the nephrogenic program to that permissive for nephron progenitor self-renewal and differentiation. Based on our results, we propose that the lifespan of nephron progenitors is determined by mechanisms related to perception of GDNF and other signaling levels.


2021 ◽  
pp. 108759
Author(s):  
Pauli Tikka ◽  
Moritz Mercker ◽  
Ilya Skovorodkin ◽  
Ulla Saarela ◽  
Seppo Vainio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document