scholarly journals Wnt11 directs nephron progenitor polarity and motile behavior ultimately determining nephron endowment

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Lori L O'Brien ◽  
Alexander N Combes ◽  
Kieran M Short ◽  
Nils O Lindström ◽  
Peter H Whitney ◽  
...  

A normal endowment of nephrons in the mammalian kidney requires a balance of nephron progenitor self-renewal and differentiation throughout development. Here, we provide evidence for a novel action of ureteric branch tip-derived Wnt11 in progenitor cell organization and interactions within the nephrogenic niche, ultimately determining nephron endowment. In Wnt11 mutants, nephron progenitors dispersed from their restricted niche, intermixing with interstitial progenitors. Nephron progenitor differentiation was accelerated, kidneys were significantly smaller, and the nephron progenitor pool was prematurely exhausted, halving the final nephron count. Interestingly, RNA-seq revealed no significant differences in gene expression. Live imaging of nephron progenitors showed that in the absence of Wnt11 they lose stable attachments to the ureteric branch tips, continuously detaching and reattaching. Further, the polarized distribution of several markers within nephron progenitors is disrupted. Together these data highlight the importance of Wnt11 signaling in directing nephron progenitor behavior which determines a normal nephrogenic program.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Kynan T Lawlor ◽  
Luke Zappia ◽  
James Lefevre ◽  
Joo-Seop Park ◽  
Nicholas A Hamilton ◽  
...  

Progenitor self-renewal and differentiation is often regulated by spatially restricted cues within a tissue microenvironment. Here, we examine how progenitor cell migration impacts regionally induced commitment within the nephrogenic niche in mice. We identify a subset of cells that express Wnt4, an early marker of nephron commitment, but migrate back into the progenitor population where they accumulate over time. Single cell RNA-seq and computational modelling of returning cells reveals that nephron progenitors can traverse the transcriptional hierarchy between self-renewal and commitment in either direction. This plasticity may enable robust regulation of nephrogenesis as niches remodel and grow during organogenesis.


2020 ◽  
Author(s):  
Eric Brunskill ◽  
Alison Jarmas ◽  
Praneet Chaturvedi ◽  
Raphael Kopan

AbstractMammalian nephron endowment is determined by the coordinated cessation of nephrogenesis in independent niches. Here we report that in young niches, cellular Wnt agonists are poorly translated, Fgf20 levels are high and R-spondin levels are low, resulting in a pro self-renewal environment. By contrast, older niches are low in Fgf20 and high in R-spondin, with increased cellular translation of Wnt agonists, including the signalosome-promoting Tmem59. This suggests a hypothesis that the tipping point for nephron progenitor exit from the niche is controlled by the gradual increase in stability and clustering of Wnt/Fzd complexes in individual cells, enhancing the response to ureteric bud-derived Wnt9b inputs and driving differentiation. We show Tsc1 hemizygosity differentially promoted translation of Wnt antagonists over agonists, expanding a transitional (Six2+, Cited1+, Wnt4+) state and delaying the tipping point. As predicted by these findings, reducing Rspo3 dosage in nephron progenitors or Tmem59 globally increased nephron numbers in vivo.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alison E. Jarmas ◽  
Eric W. Brunskill ◽  
Praneet Chaturvedi ◽  
Nathan Salomonis ◽  
Raphael Kopan

AbstractMammalian nephron endowment is determined by the coordinated cessation of nephrogenesis in independent niches. Here we report that translatome analysis in Tsc1+/− nephron progenitor cells from mice with elevated nephron numbers reveals how differential translation of Wnt antagonists over agonists tips the balance between self-renewal and differentiation. Wnt agonists are poorly translated in young niches, resulting in an environment with low R-spondin and high Fgf20 promoting self-renewal. In older niches we find increased translation of Wnt agonists, including R-spondin and the signalosome-promoting Tmem59, and low Fgf20, promoting differentiation. This suggests that the tipping point for nephron progenitor exit from the niche is controlled by the gradual increase in stability and possibly clustering of Wnt/Fzd complexes in individual cells, enhancing the response to ureteric bud-derived Wnt9b inputs and driving synchronized differentiation. As predicted by these findings, removing one Rspo3 allele in nephron progenitors delays cessation and increases nephron numbers in vivo.


2021 ◽  
Vol 32 (11) ◽  
pp. 2815-2833
Author(s):  
Jun Li ◽  
Jinshu Xu ◽  
Huihui Jiang ◽  
Ting Zhang ◽  
Aarthi Ramakrishnan ◽  
...  

BackgroundEya1 is a critical regulator of nephron progenitor cell specification and interacts with Six2 to promote NPC self-renewal. Haploinsufficiency of these genes causes kidney hypoplasia. However, how the Eya1-centered network operates remains unknown.MethodsWe engineered a 2×HA-3×Flag-Eya1 knock-in mouse line and performed coimmunoprecipitation with anti-HA or -Flag to precipitate the multitagged-Eya1 and its associated proteins. Loss-of-function, transcriptome profiling, and genome-wide binding analyses for Eya1's interacting chromatin-remodeling ATPase Brg1 were carried out. We assayed the activity of the cis-regulatory elements co-occupied by Brg1/Six2 in vivo.ResultsEya1 and Six2 interact with the Brg1-based SWI/SNF complex during kidney development. Knockout of Brg1 results in failure of metanephric mesenchyme formation and depletion of nephron progenitors, which has been linked to loss of Eya1 expression. Transcriptional profiling shows conspicuous downregulation of important regulators for nephrogenesis in Brg1-deficient cells, including Lin28, Pbx1, and Dchs1-Fat4 signaling, but upregulation of podocyte lineage, oncogenic, and cell death–inducing genes, many of which Brg1 targets. Genome-wide binding analysis identifies Brg1 occupancy to a distal enhancer of Eya1 that drives nephron progenitor–specific expression. We demonstrate that Brg1 enrichment to two distal intronic enhancers of Pbx1 and a proximal promoter region of Mycn requires Six2 activity and that these Brg1/Six2-bound enhancers govern nephron progenitor–specific expression in response to Six2 activity.ConclusionsOur results reveal an essential role for Brg1, its downstream pathways, and its interaction with Eya1-Six2 in mediating the fine balance among the self-renewal, differentiation, and survival of nephron progenitors.


2020 ◽  
Author(s):  
Hao Li ◽  
Jussi Kupari ◽  
Yujuan Gui ◽  
Edward Siefker ◽  
Benson Lu ◽  
...  

ABSTRACTDue to poor regenerative capacity of adult kidneys, nephron endowment defined by the nephrogenic program during the fetal period dictates renal and related cardiovascular health throughout life. We show that the neurotropic factor GDNF, which is in clinical trials for Parkinson’s disease, is capable of prolonging the nephrogenic program beyond its normal cessation without increasing the risk of kidney tumors. Our data demonstrates that excess GDNF expands the nephrogenic program by maintaining nephron progenitors and nephrogenesis in postnatal mouse kidneys. GDNF, through its transcriptional targets excreted from the adjacent epithelium, has a major effect on nephron progenitor self-renewal and maintenance; abnormally high GDNF inhibits nephron progenitor proliferation, but lowering its level normalizes the nephrogenic program to that permissive for nephron progenitor self-renewal and differentiation. Based on our results, we propose that the lifespan of nephron progenitors is determined by mechanisms related to perception of GDNF and other signaling levels.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1878
Author(s):  
Janina Schreiber ◽  
Nastassia Liaukouskaya ◽  
Lars Fuhrmann ◽  
Alexander-Thomas Hauser ◽  
Manfred Jung ◽  
...  

In utero renal development is subject to maternal metabolic and environmental influences affecting long-term renal function and the risk of developing chronic kidney failure and cardiovascular disease. Epigenetic processes have been implicated in the orchestration of renal development and prenatal programming of nephron number. However, the role of many epigenetic modifiers for kidney development is still unclear. Bromodomain and extra-terminal domain (BET) proteins act as histone acetylation reader molecules and promote gene transcription. BET family members Brd2, Brd3 and Brd4 are expressed in the nephrogenic zone during kidney development. Here, the effect of the BET inhibitor JQ1 on renal development is evaluated. Inhibition of BET proteins via JQ1 leads to reduced growth of metanephric kidney cultures, loss of the nephron progenitor cell population, and premature and disturbed nephron differentiation. Gene expression of key nephron progenitor transcription factor Osr1 is downregulated after 24 h BET inhibition, while Lhx1 and Pax8 expression is increased. Mining of BRD4 ChIP-seq and gene expression data identify Osr1 as a key factor regulated by BRD4-controlled gene activation. Inhibition of BRD4 by BET inhibitor JQ1 leads to downregulation of Osr1, thereby causing a disturbance in the balance of nephron progenitor cell self-renewal and premature differentiation of the nephron, which ultimately leads to kidney hypoplasia and disturbed nephron development. This raises questions about the potential teratogenic effects of BET inhibitors for embryonic development. In summary, our work highlights the role of BET proteins for prenatal programming of nephrogenesis and identifies Osr1 as a potential target of BET proteins.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1237-1237 ◽  
Author(s):  
Shalini Sankar ◽  
Miriam Guillen Navarro ◽  
Frida Ponthan ◽  
Simon Bomken ◽  
Sirintra Nakjang ◽  
...  

To identify potential regulators of propagation and self-renewal of Acute Lymphoblastic Leukaemia (ALL), we performed an explorative genome-wide RNAi screen followed by CRISPR ex vivo and in vivo validation screens in the t(4;11)-positive ALL cell line SEM. These screens identified the splicing factor PHF5A as a crucial component of the leukemic program. PHF5A is a subunit of the SF3b protein complex, which directs alternative splicing by binding to the branchpoint of pre-mRNA. Mutations in members of this complex including SF3B1 have been implicated in several haematological malignancies. Functional perturbation experiments demonstrated that PHF5A depletion impairs proliferation, viability and clonogenicity in a range of ALL and AML cell lines strongly suggesting that PHF5A is required for leukemic propagation and self-renewal. To identify genetic programs affected by PHF5A inhibition, we performed RNA-seq followed by analysis of differential gene expression and splicing events. We identified 473 genes with differential expression upon PHF5A knockdown. In addition, we performed in-depth analysis of splicing patterns by examining both differential exon/intron usage and exon junction formation. These analyses demonstrated that loss of PHF5A affects splicing of more than 2500 genes with exon skipping and intron retention being the most frequent splicing events. In order to identify processes and pathways affected by PHF5A, we performed gene set enrichment analysis (GSEA) on both differential expression and splicing. While gene sets associated with RNA processing including splicing, turnover and translation were enriched in both data sets, the differential gene expression signature was also linked to DNA repair processes including base excision, mismatch and homologous recombination repair. In line with these findings, knockdown of either PHF5A or its partner protein SF3B1 induced DNA strand breaks as indicated by comet assay and increased y-H2AX levels. Furthermore, both PHF5A and SF3B1 depletion sensitized ALL cells towards the DNA crosslinking agent mitomycin C. Closer inspection of RNA-seq datasets revealed reduced FANCD2 expression and skipping of exon 22 associated with impaired mono-ubiquitination of the FANCD2 protein as a consequence of PHF5A and SF3B1 knockdown. Furthermore, expression of RAD51, a key component of double strand break repair, also decreased upon PHF5A and SF3B1 knockdown. Notably, in vitro pharmacological inhibition of SF3b complex activity using H3B-8800 (or Pladienolide B) showed a very similar effect on FANCD2 expression, and ubiquitination as well as decrease of RAD51 and an increase in y-H2AX levels on a dose and time-dependent manner. This strongly suggests a mechanistic link between impaired RNA splicing and the repair of DNA double-strand breaks. These combined data show that leukemic cells are highly dependent on a functional SF3b splicing complex. Interference with its function results in DNA damage and also sensitizes towards DNA damaging agents pointing towards a possible benefit of the combined application of inhibitors targeting the SF3b complex with more conventional chemotherapy. Disclosures Ponthan: Epistem Ltd: Employment. Zwaan:Sanofi: Consultancy; Incyte: Consultancy; BMS: Research Funding; Roche: Consultancy; Janssen: Consultancy; Daiichi Sankyo: Consultancy; Servier: Consultancy; Jazz Pharmaceuticals: Other: Travel support; Pfizer: Research Funding; Celgene: Consultancy, Research Funding. Vormoor:Abbvie (uncompensated): Consultancy, Honoraria; Novartis: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Roche/Genentech: Consultancy, Honoraria, Research Funding; AstraZeneca: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4315-4315
Author(s):  
Ashley N. Kamimae-Lanning ◽  
Natalya A. Goloviznina ◽  
Stephanie M. Krasnow ◽  
Daniel L. Marks ◽  
Peter Kurre

Abstract Evidence in several organ systems demonstrates that pregnancy presents a window of vulnerability for establishing a foundation for health or chronic disease. Overnutrition and the complex metabolic changes that can accompany it can result in permanent phenotypic changes and a predisposition to metabolic syndrome, inflammatory or immune-mediated diseases. We previously reported that prenatal overnutrition stunted fetal liver size. Herein, we hypothesize that this might perturb hematopoietic stem and progenitor cell (HSPC) expansion. To test the effects of a high-fat diet (HFD) and maternal obesity on offspring hematopoiesis, we used a mouse model of diet-induced obesity, feeding female mice a HFD or control diet starting at 5-7 weeks of age and keeping them on the respective diet during subsequent breeding and pregnancy. We then studied offspring at gestational day 14.5 by immunophenotyping, gene expression analysis, qRT-PCR, and transplantation. Fetal livers from HFD offspring had 51% fewer c-Kit+ Sca-1+ Linlo/- and 27% fewer AA4.1+ Sca-1+ Linlo/- (ASL) hematopoietic stem and progenitor cells (HSPC) than controls. This restriction in HSPC numbers was not due to apoptosis or increased reactive oxygen species, as tested by flow cytometry. To determine whether there might be an increase in hematopoietic differentiation to account for relative HSPC deficiencies in HFD livers, we examined hematopoietic lineage subsets. HFD fetal livers had a relative increase in myeloid (Gr-1+/Ter119+) and B220+ lymphoid cells, with comparable proportion of CD3+ cells to controls. Taken together, these results suggest that chronic HFD fetal programming skews fetal liver HSPCs toward differentiation. When we examined global gene expression of male HFD fetal livers versus controls by RNA-seq, we found differential expression of 125 genes. Among the upregulated transcripts, several were involved in hematopoietic regulation, stress response, and HSPC migration. We then used qRT-PCR to test for expression of several of these genes, along with genes critically involved in fetal HSPC self-renewal, within an HSPC-enriched (Sca-1+) population of chronic HFD fetal liver cells. As in RNA-seq, Matrixmetalloproteinase-8 and 9 (Mmp8, Mmp9), which are involved in cell mobilization, were upregulated in HFD-programmed cells. Early growth response-1 (Egr-1) was downregulated as well, further suggesting premature migration of HSPCs from HFD fetal liver. Hmga2, which is implicated in fetal stem cell self-renewal, and its direct target, Igf2bp2, were significantly downregulated in chronic HFD Sca-1+ cells. Along with the immunophenotyping data, these findings suggest that maternal obesity and HFD bias HSPCs toward differentiation, at the expense of self-renewal. To dissect the direct metabolic impact, we studied fetal livers from timed pregnancy cohorts after acute HFD exposure or diet reversal in obese dams, which partially ameliorated several molecular and immunophenotypic endpoints. Finally, we performed a functional test of chronic HFD fetal liver cells by transplantation. A non-competitive transplant into irradiated male recipients yielded no difference in chimerism between HFD or control fetal liver-engrafted animals. Next, we preconditioned a cohort of female and male animals on HFD (or control diet) for 11 weeks, irradiated them, and then competitively transplanted them with a 1:1 ratio of HFD and control fetal liver cells. HFD-programmed fetal liver HSPCs engrafted HFD-conditioned male recipients at significantly lower rates than in HFD-conditioned female or control recipients of either sex. HFD-programmed donor cells retained the significant bias toward the myeloid (Gr-1+/Mac-1+) lineage, noted in the primary graft cells, and away from the B220+ B cell lineage in HFD-conditioned males. In aggregate, prenatal HFD and maternal obesity suppress self-renewal in favor of HSPC differentiation during a time of critical developmental expansion. This suggests an HSPC defect that appears at least partly specified by the stem cell microenvironment. Our work is the first to demonstrate metabolic vulnerability of the hematopoietic stem and progenitor cell compartment and establishes the hematopoietic system as a target for in utero developmental programming. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 28 (11) ◽  
pp. 3323-3335 ◽  
Author(s):  
Jiao Liu ◽  
Francesca Edgington-Giordano ◽  
Courtney Dugas ◽  
Anna Abrams ◽  
Prasad Katakam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document