scholarly journals A composition-dependent molecular clutch between T cell signaling condensates and actin

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Jonathon A Ditlev ◽  
Anthony R Vega ◽  
Darius Vasco Köster ◽  
Xiaolei Su ◽  
Tomomi Tani ◽  
...  

During T cell activation, biomolecular condensates form at the immunological synapse (IS) through multivalency-driven phase separation of LAT, Grb2, Sos1, SLP-76, Nck, and WASP. These condensates move radially at the IS, traversing successive radially-oriented and concentric actin networks. To understand this movement, we biochemically reconstituted LAT condensates with actomyosin filaments. We found that basic regions of Nck and N-WASP/WASP promote association and co-movement of LAT condensates with actin, indicating conversion of weak individual affinities to high collective affinity upon phase separation. Condensates lacking these components were propelled differently, without strong actin adhesion. In cells, LAT condensates lost Nck as radial actin transitioned to the concentric network, and engineered condensates constitutively binding actin moved aberrantly. Our data show that Nck and WASP form a clutch between LAT condensates and actin in vitro and suggest that compositional changes may enable condensate movement by distinct actin networks in different regions of the IS.

2018 ◽  
Author(s):  
J.A. Ditlev ◽  
A.R. Vega ◽  
D.V. Köster ◽  
X. Su ◽  
T. Tani ◽  
...  

AbstractBiomolecular condensates play important roles in eukaryotic cells by concentrating molecules into foci without a surrounding membrane. During T cell activation, biomolecular condensates form at the immunological synapse (IS) through multivalency-driven phase separation of the adaptor protein LAT and its binding partners Grb2, Sos1, SLP-76, Nck and WASP. These condensates move radially at the IS, traversing a radially-oriented and then a concentric actin network. To understand the persistent radial movement, we biochemically reconstituted LAT condensates with mobile actomyosin filaments. We found that basic regions of Nck and N-WASP promote strong association and co-movement of LAT condensates with actin. Condensates lacking these components were instead propelled by steric interactions. In cells, LAT condensates lost Nck while traversing the boundary between the two actin networks, and condensates engineered to constitutively bind actin moved aberrantly. We propose that Nck and WASP form a clutch between LAT condensates and actin, and changes in composition enable condensate movement by distinct actin networks in different regions of the IS.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1446
Author(s):  
June Guha ◽  
Raj Chari

T cell activation by antigen involves multiple sequential steps, including T cell receptor-microcluster TCR-(MC) formation, immunological synapse formation, and phosphorylation of mediators downstream of the TCR. The adaptor protein, Disc Large Homolog 1 (DLG1), is known to regulate proximal TCR signaling and, in turn, T cell activation, acting as a molecular chaperone that organizes specific kinases downstream of antigen recognition. In this study, we used knockdown and knockout technologies in human primary T cells and a human T cell line to demonstrate the role of DLG1 in proximal T cell signaling. High-end confocal microscopy was used for pictorial representation of T cell micro-clusters and colocalization studies. From all these studies, we could demonstrate that DLG1 functions even earlier than immunological synapse formation, to regulate T cell activation by promoting TCR-MC formation. Moreover, we found that DLG1 can act as a bridge between the TCR-ζ chain and ZAP70 while inhibiting binding of the phosphatase SHP1 to TCR-ζ. Together, these effects drive dysregulation of T cell activation in DLG1-deficient T cells. Overall, the activation and survival status of T cell is a critical determinant of effective vaccine response, and DLG1-mediated T cell signaling events can be a driving factor for improving vaccine-designing strategies.


2021 ◽  
Author(s):  
Morteza Aramesh ◽  
Diana Stoycheva ◽  
Ioana Sandu ◽  
Stephan J. Ihle ◽  
Tamara Zund ◽  
...  

T cells sense and respond to their local environment at the nanoscale by forming small actin-rich protrusions, called microvilli, which play critical roles in signaling and antigen recognition, particularly at the interface with the antigen presenting cells. However, the mechanisms by which microvilli contribute to cell signaling and activation is largely unknown. Here, we present a tunable engineered system that promotes microvilli formation and T cell signaling via physical stimuli. We discovered that nanoporous surfaces favored microvilli formation, and markedly altered gene expression in T cells and promoted their activation. Mechanistically, confinement of microvilli inside of nanopores leads to size-dependent sorting of membrane-anchored proteins, specifically segregating CD45 phosphatases and T cell receptors (TCR) from the tip of the protrusions when microvilli are confined in 200 nm pores, but not in 400 nm pores. Consequently, formation of TCR nanoclustered hotspots within 200 nm pores, allows sustained and augmented signaling that prompts T cell activation even in the absence of TCR agonists. The synergistic combination of mechanical and biochemical signals on porous surfaces presents a straightforward strategy to investigate the role of microvilli in T cell signaling as well as to boost T cell activation and expansion for application in the growing field of adoptive immunotherapy.


Science ◽  
2021 ◽  
Vol 372 (6546) ◽  
pp. eabe9124
Author(s):  
Pirooz Zareie ◽  
Christopher Szeto ◽  
Carine Farenc ◽  
Sachith D. Gunasinghe ◽  
Elizabeth M. Kolawole ◽  
...  

T cell receptor (TCR) recognition of peptide–major histocompatibility complexes (pMHCs) is characterized by a highly conserved docking polarity. Whether this polarity is driven by recognition or signaling constraints remains unclear. Using “reversed-docking” TCRβ-variable (TRBV) 17+ TCRs from the naïve mouse CD8+ T cell repertoire that recognizes the H-2Db–NP366 epitope, we demonstrate that their inability to support T cell activation and in vivo recruitment is a direct consequence of reversed docking polarity and not TCR–pMHCI binding or clustering characteristics. Canonical TCR–pMHCI docking optimally localizes CD8/Lck to the CD3 complex, which is prevented by reversed TCR–pMHCI polarity. The requirement for canonical docking was circumvented by dissociating Lck from CD8. Thus, the consensus TCR–pMHC docking topology is mandated by T cell signaling constraints.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1433 ◽  
Author(s):  
Chuang ◽  
Tan

T cells play a critical role in the pathogenesis of systemic lupus erythematosus (SLE), which is a severe autoimmune disease. In the past 60 years, only one new therapeutic agent with limited efficacy has been approved for SLE treatment; therefore, the development of early diagnostic biomarkers and therapeutic targets for SLE is desirable. Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) and dual-specificity phosphatases (DUSPs) are regulators of MAP kinases. Several MAP4Ks and DUSPs are involved in T-cell signaling and autoimmune responses. HPK1 (MAP4K1), DUSP22 (JKAP), and DUSP14 are negative regulators of T-cell activation. Consistently, HPK1 and DUSP22 are downregulated in the T cells of human SLE patients. In contrast, MAP4K3 (GLK) is a positive regulator of T-cell signaling and T-cell-mediated immune responses. MAP4K3 overexpression-induced RORγt–AhR complex specifically controls interleukin 17A (IL-17A) production in T cells, leading to autoimmune responses. Consistently, MAP4K3 and the RORγt–AhR complex are overexpressed in the T cells of human SLE patients, as are DUSP4 and DUSP23. In addition, DUSPs are also involved in either human autoimmune diseases (DUSP2, DUSP7, DUSP10, and DUSP12) or T-cell activation (DUSP1, DUSP5, and DUSP14). In this review, we summarize the MAP4Ks and DUSPs that are potential biomarkers and/or therapeutic targets for SLE.


2018 ◽  
Vol 3 ◽  
pp. 84 ◽  
Author(s):  
Chiara Beilin ◽  
Kaushik Choudhuri ◽  
Gerben Bouma ◽  
Dessislava Malinova ◽  
Jaime Llodra ◽  
...  

Background:Mutations of the common cytokine receptor gamma chain (γc) cause Severe Combined Immunodeficiency characterized by absent T and NK cell development. Although stem cell therapy restores these lineages, residual immune defects are observed that may result from selective persistence of γc-deficiency in myeloid lineages. However, little is known about the contribution of myeloid-expressed γc to protective immune responses.  Here we examine the importance of γc for myeloid dendritic cell (DC) function.Methods:We utilize a combination ofin vitroDC/T-cell co-culture assays and a novel lipid bilayer system mimicking the T cell surface to delineate the role of DC-expressed γc during DC/T-cell interaction.Results:We observed that γc in DC was recruited to the contact interface following MHCII ligation, and promoted IL-15Rα colocalization with engaged MHCII. Unexpectedly, trans-presentation of IL-15 was required for optimal CD4+T cell activation by DC and depended on DC γc expression. Neither recruitment of IL-15Rα nor IL-15 trans-signaling at the DC immune synapse (IS), required γc signaling in DC, suggesting that γc facilitates IL-15 transpresentation through induced intermolecularcisassociations or cytoskeletal reorganization following MHCII ligation.Conclusions:These findings show that DC-expressed γc is required for effective antigen-induced CD4+ T cell activation. We reveal a novel mechanism for recruitment of DC IL-15/IL-15Rα complexes to the IS, leading to CD4+ T cell costimulation through localized IL-15 transpresentation that is coordinated with antigen-recognition.


2005 ◽  
Vol 170 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Joseph Lin ◽  
Mark J. Miller ◽  
Andrey S. Shaw

T cells integrate and transduce the key signals necessary to mount an appropriate immune response. To do this, they rely on both secreted factors as well as physical cell–cell contact. Much attention has focused on the organization of proteins at the contact area between a T cell and an antigen-presenting cell, known as the immunological synapse. It has been shown in vitro that proteins segregate into two distinct regions within this contact area, a central area referred to as the c-SMAC, where the T cell receptor and associated signaling molecules are enriched, and a peripheral region called the p-SMAC containing LFA-1 and the scaffolding protein talin. Whether or not these structures form in vivo and how they function in T cell activation remain issues of great interest. Here, we review recently published work and propose several possible functions for the role of the c-SMAC in T cell activation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Genevieve N. Mullins ◽  
Kristen M. Valentine ◽  
Mufadhal Al-Kuhlani ◽  
Dan Davini ◽  
Kirk D. C. Jensen ◽  
...  

AbstractIL-2Rα, in part, comprises the high affinity receptor for IL-2, a cytokine important in immune proliferation, activation, and regulation. IL-2Rα deficient mice (IL-2Rα-KO) develop systemic autoimmune disease and die from severe anemia between 18 and 80 days of age. These mice develop kinetically distinct autoimmune progression, with approximately a quarter dying by 21 days of age and half dying after 30 days. This research aims to define immune parameters and cytokine signaling that distinguish cohorts of IL-2Rα-KO mice that develop early- versus late-stage autoimmune disease. To investigate these differences, we evaluated complete blood counts (CBC), antibody binding of RBCs, T cell numbers and activation, hematopoietic progenitor changes, and signaling kinetics, during autoimmune hemolytic anemia (AIHA) and bone marrow failure. We identified several alterations that, when combined, correlate to disease kinetics. Early onset disease correlates with anti-RBC antibodies, lower hematocrit, and reduced IL-7 signaling. CD8 regulatory T cells (Tregs) have enhanced apoptosis in early disease. Further, early and late end stage disease, while largely similar, had several differences suggesting distinct mechanisms drive autoimmune disease kinetics. Therefore, IL-2Rα-KO disease pathology rates, driven by T cell signaling, promote effector T cell activation and expansion and Treg dysfunction.


2003 ◽  
Vol 197 (1) ◽  
pp. 129-135 ◽  
Author(s):  
Shunsuke Chikuma ◽  
John B. Imboden ◽  
Jeffrey A. Bluestone

Cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) is an essential negative regulator of T cell activation. Recent evidence suggests that CTLA-4 association with the immunological synapse during contact with antigen-presenting cells is important for its inhibitory function. In the present study, we observed a direct interaction of CTLA-4 with the phosphorylated form of T cell receptor (TCR)ζ within the glycolipid-enriched microdomains associated with the T cell signaling complex. In this setting, CTLA-4 regulated the accumulation/retention of TCRζ in the signaling complex, as the lipid raft fractions from CTLA-4KO T cells contained significantly higher amounts of the TCR components when compared with wild-type littermates. In contrast, coligation of CTLA-4 with the TCR during T cell activation selectively decreased the amount of TCRζ that accumulated in the rafts. These results suggest that CTLA-4 functions to regulate T cell signaling by controlling TCR accumulation and/or retention within this a critical component of the immunological synapse.


2008 ◽  
Vol 181 (2) ◽  
pp. 203-211 ◽  
Author(s):  
Ona Bloom ◽  
Julia J. Unternaehrer ◽  
Aimin Jiang ◽  
Jeong-Sook Shin ◽  
Lélia Delamarre ◽  
...  

The adaptive immune response is initiated by the presentation of peptides bound to major histocompatibility complex molecules on dendritic cells (DCs) to antigen-specific T lymphocytes at a junction termed the immunological synapse. Although much attention has been paid to cytoplasmic events on the T cell side of the synapse, little is known concerning events on the DC side. We have sought signal transduction components of the neuronal synapse that were also expressed by DCs. One such protein is spinophilin, a scaffolding protein of neuronal dendritic spines that regulates synaptic transmission. In inactive, immature DCs, spinophilin is located throughout the cytoplasm but redistributes to the plasma membrane upon stimulus-induced maturation. In DCs interacting with T cells, spinophilin is polarized dynamically to contact sites in an antigen-dependent manner. It is also required for optimal T cell activation because DCs derived from mice lacking spinophilin exhibit defects in antigen presentation both in vitro and in vivo. Thus, spinophilin may play analogous roles in information transfer at both neuronal and immunological synapses.


Sign in / Sign up

Export Citation Format

Share Document