scholarly journals Sex-specific effects of cooperative breeding and colonial nesting on prosociality in corvids

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Lisa Horn ◽  
Thomas Bugnyar ◽  
Michael Griesser ◽  
Marietta Hengl ◽  
Ei-Ichi Izawa ◽  
...  

The investigation of prosocial behavior is of particular interest from an evolutionary perspective. Comparisons of prosociality across non-human animal species have, however, so far largely focused on primates, and their interpretation is hampered by the diversity of paradigms and procedures used. Here, we present the first systematic comparison of prosocial behavior across multiple species in a taxonomic group outside the primate order, namely the bird family Corvidae. We measured prosociality in eight corvid species, which vary in the expression of cooperative breeding and colonial nesting. We show that cooperative breeding is positively associated with prosocial behavior across species. Also, colonial nesting is associated with a stronger propensity for prosocial behavior, but only in males. The combined results of our study strongly suggest that both cooperative breeding and colonial nesting, which may both rely on heightened social tolerance at the nest, are likely evolutionary pathways to prosocial behavior in corvids.

2017 ◽  
Author(s):  
Andrea Ravignani ◽  
Sonja Kotz

Increasing empirical research shows a deep connection between timing processes and neural processing of social information. An integrative theoretical framework for prospective studies in humans was recently proposed, linking timing to sociality. A similar framework guiding research in non-human animals is desirable, ideally encompassing as many taxonomic groups and sensory modalities as possible in order to embrace the diversity of social and timing behaviour across species. Here we expand on a previous theoretical account, introducing this debate to animal behaviour. We suggest adopting an evolutionary perspective on social timing in animals: i.e. a comparative approach to probe the link between temporal and social behaviour across a broad range of animal species. This approach should advance our understanding of animal social timing that is, how social behaviour and timing are mutually affected, and possibly of its evolutionary history in our own lineage. We conclude by identifying outstanding questions and testable hypotheses in animal social timing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Joseph B. Kelly ◽  
David E. Carlson ◽  
Jun Siong Low ◽  
Tyler Rice ◽  
Robert W. Thacker

Sponges are often densely populated by microbes that benefit their hosts through nutrition and bioactive secondary metabolites; however, sponges must simultaneously contend with the toxicity of microbes and thwart microbial overgrowth. Despite these fundamental tenets of sponge biology, the patterns of selection in the host sponges’ genomes that underlie tolerance and control of their microbiomes are still poorly understood. To elucidate these patterns of selection, we performed a population genetic analysis on multiple species of Ircinia from Belize, Florida, and Panama using an FST-outlier approach on transcriptome-annotated RADseq loci. As part of the analysis, we delimited species boundaries among seven growth forms of Ircinia. Our analyses identified balancing selection in immunity genes that have implications for the hosts’ tolerance of high densities of microbes. Additionally, our results support the hypothesis that each of the seven growth forms constitutes a distinct Ircinia species that is characterized by a unique microbiome. These results illuminate the evolutionary pathways that promote stable associations between host sponges and their microbiomes, and that potentially facilitate ecological divergence among Ircinia species.


2019 ◽  
Vol 286 (1899) ◽  
pp. 20182664 ◽  
Author(s):  
Claire Dandine-Roulland ◽  
Romain Laurent ◽  
Irene Dall'Ara ◽  
Bruno Toupance ◽  
Raphaëlle Chaix

Although pervasive in many animal species, the evidence for major histocompatibility complex (MHC) disassortative mating in humans remains inconsistent across studies. Here, to revisit this issue, we analyse dense genotype data for 883 European and Middle Eastern couples. To distinguish MHC-specific effects from socio-cultural confounders, the pattern of relatedness between spouses in the MHC region is compared to the rest of the genome. Couples from Israel exhibit no significant pattern of relatedness across the MHC region, whereas across the genome, they are more similar than random pairs of individuals, which may reflect social homogamy and/or cousin marriages. On the other hand, couples from The Netherlands and more generally from Northern Europe are significantly more MHC-dissimilar than random pairs of individuals, and this pattern of dissimilarity is extreme when compared with the rest of the genome. Our findings support the hypothesis that the MHC influences mate choice in humans in a context-dependent way: MHC-driven preferences may exist in all populations but, in some populations, social constraints over mate choice may reduce the ability of individuals to rely on such biological cues when choosing their mates.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 797
Author(s):  
John T. Hancock ◽  
Ros C. Rouse ◽  
Emma Stone ◽  
Alexander Greenhough

COVID-19, caused by SARS-CoV-2, is a world-wide problem for the human population. It is known that some animal species, such as mink, can become infected and transmit the virus. However, the susceptibility of most animals is not known. Here, we review the use of sequence analysis of the proteins which are known to interact with SARS-CoV-2 as a way to estimate an animal’s susceptibility. Although most such work concentrates on the angiotensin-converting enzyme 2 receptor (ACE2), here TMPRSS2 (Transmembrane Serine Protease 2), neuropilin-1 and furin are also considered. Polymorphisms, especially ones which are known to alter viral/host interactions are also discussed. Analysis of ACE2 and TMPRSS2 protein sequences across species suggests this approach may be of some utility in predicting susceptibility; however, this analysis fails to highlight some susceptible animals such as mink. However, combined with observational data which emerges over time about which animals actually become infected, this may, in the future, be a useful tool to assist the management of risks associated with human/animal contact and support conservation and animal welfare measures.


2021 ◽  
Author(s):  
Alexandra B. Bosshard ◽  
Maël M. Leroux ◽  
Nicholas A. Lester ◽  
Balthasar Bickel ◽  
Sabine Stoll ◽  
...  

Emerging data in a range of non-human animal species have highlighted a latent ability to combine certain pre-existing calls together into larger structures. Currently, however, there exists no objective quantification of call combinations. This is problematic because animal calls can co-occur with one another simply through chance alone. One common approach applied in language sciences to identify recurrent word combinations is collocation analysis. Through comparing the co-occurrence of two words with how each word combines with other words within a corpus, collocation analysis can highlight above chance, two-word combinations. Here, we demonstrate how this approach can also be applied to non-human animal communication systems by implementing it on a pseudo dataset. We argue collocation analysis represents a promising tool for identifying non-random, communicatively relevant call combinations in animals.


2020 ◽  
Author(s):  
Joseph B. Kelly ◽  
David Carlson ◽  
Jun Siong Low ◽  
Tyler Rice ◽  
Robert W. Thacker

AbstractSponges are often densely populated by microbes that benefit their hosts through nutrition and bioactive secondary metabolites; however, sponges must simultaneously contend with the toxicity of microbes and thwart microbial overgrowth. Despite these fundamental tenets of sponge biology, the patterns of selection in the host sponges’ genomes that underlie tolerance and control of their microbiomes are still poorly understood. To elucidate these patterns of selection, we performed a population genetic analysis on multiple species of Ircinia from Belize, Florida, and Panama using an FST-outlier approach on transcriptome-annotated RADseq loci. As part of the analysis, we delimited species boundaries among seven growth forms of Ircinia. Our analyses identified balancing selection in immunity genes that have implications for the hosts’ tolerance of high densities of microbes. Additionally, our results support the hypothesis that each of the seven growth forms constitutes a distinct Ircinia species that is characterized by a unique microbiome. These results illuminate the evolutionary pathways that promote stable associations between host sponges and their microbiomes, and that potentially facilitate ecological divergence among Ircinia species.


2009 ◽  
Vol 13 (2_suppl) ◽  
pp. 201-226 ◽  
Author(s):  
Gertraud Fenk-Oczlon ◽  
August Fenk

Parallels between language and music are considered as a useful basis for examining possible evolutionary pathways of these achievements. Such parallels become apparent if we compare clauses and syllables in language with phrases and notes in music: Clauses as well as musical phrases typically span about 2 sec and about 5 to 10 pulses, i.e. syllables or notes. The n of syllables per clause or intonation unit also can be used as a measure of tempo across languages and thus also as a means for a better understanding of typological co-variations in the rhythm of speech and music. Further correspondences were found between the size of the sound-relevant inventories, i.e. vowels and musical intervals: a minimum of roughly 3 and a maximum of roughly 12 elements as well as a frequency peak at 5 elements. A link between vowels and musical intervals is also indicated by our findings that in Alpine yodellers the vowels are highly correlated to melodic direction according to their F2 ordering. These parallels are discussed from an evolutionary perspective that either sees music as a precursor of language or both language and music as descendents of a common, “half-musical” precursor (Jespersen, 1895; Brown, 2000). A rather simple explanation of the parallels is reported: If singing in a broader sense of the word is the most original form of music, then the functionality of any mechanism involved in the programming and the online-control of intonation units will be reflected in language as well as in music.


Sign in / Sign up

Export Citation Format

Share Document