scholarly journals Evolution of temporal interaction: A comparative approach to social timing

Author(s):  
Andrea Ravignani ◽  
Sonja Kotz

Increasing empirical research shows a deep connection between timing processes and neural processing of social information. An integrative theoretical framework for prospective studies in humans was recently proposed, linking timing to sociality. A similar framework guiding research in non-human animals is desirable, ideally encompassing as many taxonomic groups and sensory modalities as possible in order to embrace the diversity of social and timing behaviour across species. Here we expand on a previous theoretical account, introducing this debate to animal behaviour. We suggest adopting an evolutionary perspective on social timing in animals: i.e. a comparative approach to probe the link between temporal and social behaviour across a broad range of animal species. This approach should advance our understanding of animal social timing that is, how social behaviour and timing are mutually affected, and possibly of its evolutionary history in our own lineage. We conclude by identifying outstanding questions and testable hypotheses in animal social timing.

2017 ◽  
Author(s):  
Andrea Ravignani ◽  
Sonja Kotz

Increasing empirical research shows a deep connection between timing processes and neural processing of social information. An integrative theoretical framework for prospective studies in humans was recently proposed, linking timing to sociality. A similar framework guiding research in non-human animals is desirable, ideally encompassing as many taxonomic groups and sensory modalities as possible in order to embrace the diversity of social and timing behaviour across species. Here we expand on a previous theoretical account, introducing this debate to animal behaviour. We suggest adopting an evolutionary perspective on social timing in animals: i.e. a comparative approach to probe the link between temporal and social behaviour across a broad range of animal species. This approach should advance our understanding of animal social timing that is, how social behaviour and timing are mutually affected, and possibly of its evolutionary history in our own lineage. We conclude by identifying outstanding questions and testable hypotheses in animal social timing.


2008 ◽  
Vol 4 (2) ◽  
pp. 179-182 ◽  
Author(s):  
Reuben Clements ◽  
Thor-Seng Liew ◽  
Jaap Jan Vermeulen ◽  
Menno Schilthuizen

The manner in which a gastropod shell coils has long intrigued laypersons and scientists alike. In evolutionary biology, gastropod shells are among the best-studied palaeontological and neontological objects. A gastropod shell generally exhibits logarithmic spiral growth, right-handedness and coils tightly around a single axis. Atypical shell-coiling patterns (e.g. sinistroid growth, uncoiled whorls and multiple coiling axes), however, continue to be uncovered in nature. Here, we report another coiling strategy that is not only puzzling from an evolutionary perspective, but also hitherto unknown among shelled gastropods. The terrestrial gastropod Opisthostoma vermiculum sp. nov. generates a shell with: (i) four discernable coiling axes, (ii) body whorls that thrice detach and twice reattach to preceding whorls without any reference support, and (iii) detached whorls that coil around three secondary axes in addition to their primary teleoconch axis. As the coiling strategies of individuals were found to be generally consistent throughout, this species appears to possess an unorthodox but rigorously defined set of developmental instructions. Although the evolutionary origins of O. vermiculum and its shell's functional significance can be elucidated only once fossil intermediates and live individuals are found, its bewildering morphology suggests that we still lack an understanding of relationships between form and function in certain taxonomic groups.


Author(s):  
Jacques Robert ◽  
Francisco De Jesús Andino ◽  
Maureen Banach ◽  
Kun Hyoe Rhoo ◽  
Eva-Stina Edholm

2015 ◽  
Vol 147 (4) ◽  
pp. 217-239 ◽  
Author(s):  
Adriana Canapa ◽  
Marco Barucca ◽  
Maria A. Biscotti ◽  
Mariko Forconi ◽  
Ettore Olmo

The relationship between genome size and the percentage of transposons in 161 animal species evidenced that variations in genome size are linked to the amplification or the contraction of transposable elements. The activity of transposable elements could represent a response to environmental stressors. Indeed, although with different trends in protostomes and deuterostomes, comprehensive changes in genome size were recorded in concomitance with particular periods of evolutionary history or adaptations to specific environments. During evolution, genome size and the presence of transposable elements have influenced structural and functional parameters of genomes and cells. Changes of these parameters have had an impact on morphological and functional characteristics of the organism on which natural selection directly acts. Therefore, the current situation represents a balance between insertion and amplification of transposons and the mechanisms responsible for their deletion or for decreasing their activity. Among the latter, methylation and the silencing action of small RNAs likely represent the most frequent mechanisms.


This paper begins by asking to what extent numbers of species are an adequate measure of biological diversity, either locally or globally; both for evolutionary understanding and for practical applications, biodiversity may often be better quantified at lower or higher levels, from genes to ecosystems. The subsequent discussion, however, focuses on species, and discusses questions that arise in estimating how many species there have ever been, how many there currently are in various taxonomic groups, and how we may quantify the differing degrees of ‘independent evolutionary history’ or ‘taxonomic distinctiveness’ in different species or groups. I conclude with opinions about how the practical task of identifying and recording species diversity might be better managed.


2021 ◽  
Vol 50 (10) ◽  
pp. 2877-2884
Author(s):  
Zahid Farooq ◽  
Irfan Baboo ◽  
Muhammad Younas ◽  
Khalid Javed Iqbal ◽  
Sana Asad ◽  
...  

Management practices/strategies to re-modulate the wild behaviour of animal species could increase their number in natural areas. The captive herd of hog deer showed slight changes from wild behaviour due to captive stress with no alteration in wild behaviour pattern except captive stress. Adult males (6), adult females (6) and fawns (6) were selected and observed round the clock for thirty days across season after one-hour interval on each activity. All subjects in hotter part of the day spent more time in sitting and rest. While, few hours of night in sleeping, resting and rumination. Fawn spent more time in sitting, resting, and hiding compared to adults. During wandering, they also spent some time in standing. It was noticed that all hog deer in herd not slept together but few of them remain active. Only male fighting was observed and maximum was noticed in August and September during breeding season. Hog deer were mainly crepuscular in feeding with irregular short intakes, and grazing on grasses present in enclosure. This study provides guideline to rehabilitate wild hog deer for better breeding management, conservation and raising practices.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elena Lorenzi ◽  
Matilde Perrino ◽  
Giorgio Vallortigara

The ability to represent, discriminate, and perform arithmetic operations on discrete quantities (numerosities) has been documented in a variety of species of different taxonomic groups, both vertebrates and invertebrates. We do not know, however, to what extent similarity in behavioral data corresponds to basic similarity in underlying neural mechanisms. Here, we review evidence for magnitude representation, both discrete (countable) and continuous, following the sensory input path from primary sensory systems to associative pallial territories in the vertebrate brains. We also speculate on possible underlying mechanisms in invertebrate brains and on the role played by modeling with artificial neural networks. This may provide a general overview on the nervous system involvement in approximating quantity in different animal species, and a general theoretical framework to future comparative studies on the neurobiology of number cognition.


2018 ◽  
Vol 22 (3) ◽  
Author(s):  
Nidia Yaneth Torres-Merchán ◽  
Luis Alfonso Salcedo-Plazas ◽  
Ángela Becerra-Niño ◽  
Wilson Valderrama

This article analyzes the influence of mass media on primary school students when studying animal species. Images on taxonomic groups of wildlife transmit perceptions. Therefore, these transmitted perceptions are examined in 249 children from rural and urban elementary school aged 7 to 13 years old. This analysis used two PowerPoint presentations with images of endemic and non-endemic species. It is found that in urban and rural contexts, television and Internet are the means for further identification of the species presented. Concerning the perceptions, students have a preference for mammals and birds species. These data allow inferring the influence media can have on the knowledge of biodiversity and the promotion of care towards nature.


2019 ◽  
Vol 21 ◽  
pp. 17-37
Author(s):  
Rainer Breitling

DNA barcode sequencing has rapidly become one of the most powerful tools for biodiversity assessments. Beyond its original uses for the identification of animal species, including the discovery of cryptic diversity in difficult taxonomic groups, the growing public sequence datasets also offer opportunities for more wide-ranging applications. This contribution shows how barcode data can provide useful complementary information to assist taxonomic decision making at the genus level. An analysis of public barcode datasets for 10 diverse spider families, covering more than 3400 species and morphospecies, reveals numerous examples where sequence similarities either strongly support or convincingly refute recent controversial genus assignments. The following nomenclatorial changes are suggested based on a combined assessment of morphological evidence and the barcode analysis: Acantholycosa = Pardosa (syn. nov.); Piratula = Pirata (syn. nov.); Pulchellodromus, Philodromimus, Tibellomimus, Artanes, and Emargidromus = subgenera of Philodromus (stat. nov.); Cryptachaea riparia = Parasteatoda riparia (comb. nov.); Ohlertidion = Heterotheridion (syn. nov.); Saaristoa = Aphileta (syn. nov.); Aphileta microtarsa = Eulaira microtarsa (comb. conf.); Centromerita and Tallusia = Centromerus (syn. conf.); Obscuriphantes, Agnyphantes, and Acanthoneta = Poeciloneta (syn. nov.); Bolyphantes bipartitus = Poeciloneta bipartita (comb. nov.); Anguliphantes, Improphantes, Piniphantes, and Mansuphantes = Oryphantes (syn. nov.), Palliduphantes antroniensis = Oryphantes antroniensis (comb. nov.), Lepthyphantes nodifer = Oryphantes nodifer (comb. nov.), Hypositticus, Sittipub, Calositticus, Sittisax, Sittiflor, and Attulus = Sitticus (syn. nov.).


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2331
Author(s):  
Iwona Janczarek ◽  
Anna Wiśniewska ◽  
Michael H. Chruszczewski ◽  
Ewelina Tkaczyk ◽  
Aleksandra Górecka-Bruzda

We tested the hypothesis that social defensive responses to the vocalisation of a predator still exist in horses. The recordings of a grey wolf, an Arabian leopard and a golden jackal were played to 20 Konik polski and Arabian mares. Durations of grazing, standing still, standing alert and the number of steps in walk and trot/canter were measured. In one-minute scans, the distances of the focal horse from the reference horse (DIST-RH) and from the nearest loudspeaker (DIST-LS) were approximated. The vocalisation of a leopard aroused the Arabians more than the Koniks (less grazing, stand-still and walk, more stand-alert and trotting/cantering). Koniks showed more relaxed behaviours to the leopard vocalisation (more grazing, stand-still and walk), but high alertness to the wolf playback (stand-alert, trotting/cantering). Spatial formation of the herd of Koniks showed tight grouping (lower DIST-RH) and maintaining distance from the potential threat (DIST-LS) in response to the wolf howling, while the Arabians approached the loudspeakers in linear herd formation when the leopard growls were played. Adult horses responded to potential predation by changing spatial group formations. This ability to apply a social strategy may be one of the explanations for the least number of horses among all hunted farm animal species.


Sign in / Sign up

Export Citation Format

Share Document