timing processes
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 3)

H-INDEX

16
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
David Hammerschmidt ◽  
Klaus Frieler ◽  
Clemens Wöllner

The spontaneous motor tempo (SMT) describes the pace of regular and repeated movements such as hand clapping or walking. It is typically measured by letting people tap with their index finger at a pace that feels most natural and comfortable to them. A number of factors have been suggested to influence the SMT, such as age, time of the day, arousal, and potentially musical experience. This study aimed at investigating the effects of these factors in a combined and out-of-the-lab context by implementing the finger-tapping paradigm in an online experiment using a self-developed web application. Due to statistical multimodality in the distribution of participants' SMT (N = 3,576), showing peaks at modes of around 250 ms, a Gaussian mixture model was applied that grouped participants into six clusters, ranging from Very Fast (M = 265 ms, SD = 74) to Very Slow (M = 1,757 ms, SD = 166). These SMT clusters differed in terms of age, suggesting that older participants had a slower SMT, and time of the day, showing that the earlier it was, the slower participants' SMT. While arousal did not differ between the SMT clusters, more aroused participants showed faster SMTs across all normalized SMT clusters. Effects of musical experience were inconclusive. With a large international sample, these results provide insights into factors influencing the SMT irrespective of cultural background, which can be seen as a window into human timing processes.



2021 ◽  
pp. 1-23
Author(s):  
Neil P. M. Todd ◽  
Peter E. Keller ◽  
Sendhil Govender ◽  
James G. Colebatch

Abstract We report an experiment to investigate possible vestibular effects on finger tapping to an auditory anapaest rhythm. In a sample of 10 subjects, index finger acceleration and tapping force were recorded along with extensor/flexor activity and the associated electroencephalographic activity measured at central and cerebellar surface electrodes. In a prior session with a standard short air-conducted 500-Hz pip, vestibular evoked myogenic potential thresholds were measured and subsequently used to set the acoustic intensity. During the main experiment subjects were asked to synchronise tapping to the pips arranged in the anapaest at two different frequencies, 500 Hz vs 5 kHz, so that only the low-frequency high-intensity condition was a vestibular, as well as an auditory stimulus. We hypothesised that a vestibular effect would manifest in an interaction between the frequency and intensity factors for a range of dependent measures of tapping performance. No clear evidence was found for vestibular effects, but this was likely due to the confounding effects of an independent effect of intensity and the relative weakness of the acoustic vestibular stimulus. However, the data did show novel evidence for two distinct timing processes for the flexion and extension stages of a tap cycle and two distinct timing strategies, which we refer to as ‘staccato’ and ‘legato’, characterised by different profiles of force and extension.



2021 ◽  
Author(s):  
Daniel Poole ◽  
Martin Casassus ◽  
Emma Gowen ◽  
Ellen Poliakoff ◽  
Luke Anthony Jones

It has previously been proposed that autistic people have problems with timing which underlie the behavioural and cognitive differences in the condition. However, the nature of this postulated timing issue has not been well specified and the existing experimental literature has generated mixed findings. In the current study, we attempted a systematic investigation of timing processes in autistic adults using Scalar Expectancy Theory as a theoretical framework. Autistic (n = 58) and non-autistic (neurotypical; n = 91) adults matched for age, sex and full-scale IQ completed a battery of auditory and visual timing tasks measuring basic sub-second duration perception (temporal difference thresholds), clock processes (verbal estimation), clock and memory processes (temporal generalisation), and relative timing (temporal order judgements). Participants also completed supra-second retrospective duration estimates where the participant was not warned in advanced that they would be required to make a timing judgement, and questionnaires measuring self-reported timing behaviours in daily life. The groups reported differences on questionnaires, but measures of timing performance were comparable overall. In an exploratory analysis, we performed principal components analysis to investigate the relationship between timing judgements and participants’ self-reported social-communicative, sensory and motor traits. Measures of timing performance were not well correlated with these questionnaire scores. The current study is not supportive of reduced timing performance in autistic adults, nor of a relationship between sub-second timing perception and social-communicative, sensory or motor traits.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Matthew Bernardinis ◽  
S. Farokh Atashzar ◽  
Mandar S. Jog ◽  
Rajni V. Patel

AbstractNon-motor symptoms in Parkinson’s Disease (PD) predate motor symptoms and substantially decrease quality of life; however, detection, monitoring, and treatments are unavailable for many of these symptoms. Temporal perception abnormalities in PD are generally attributed to altered Basal Ganglia (BG) function. Present studies are confounded by motor control facilitating movements that are integrated into protocols assessing temporal perception. There is uncertainty regarding the BG’s influence on timing processes of different time scales and how PD therapies affect this perception. In this study, PD patients using Levodopa (n = 25), Deep Brain Stimulation (DBS; n = 6), de novo patients (n = 6), and healthy controls (n = 17) completed a visual temporal perception task in seconds and sub-section timing scales using a computer-generated graphical tool. For all patient groups, there were no impairments seen at the smaller tested magnitudes (using sub-second timing). However, all PD groups displayed significant impairments at the larger tested magnitudes (using interval timing). Neither Levodopa nor DBS therapy led to significant improvements in timing abilities. Levodopa resulted in a strong trend towards impairing timing processes and caused a deterioration in perceptual coherency according to Weber’s Law. It is shown that timing abnormalities in PD occur in the seconds range but do not extend to the sub-second range. Furthermore, observed timing deficits were shown to not be solely caused by motor deficiency. This provides evidence to support internal clock models involving the BG (among other neural regions) in interval timing, and cerebellar control of sub-second timing. This study also revealed significant temporal perception deficits in recently diagnosed PD patients; thus, temporal perception abnormalities might act as an early disease marker, with the graphical tool showing potential for disease monitoring.



2019 ◽  
Vol 7 (1) ◽  
pp. 27-47 ◽  
Author(s):  
Aurore Malet-Karas ◽  
Marion Noulhiane ◽  
Valérie Doyère

Time and space are commonly approached as two distinct dimensions, and rarely combined together in a single task, preventing a comparison of their interaction. In this project, using a version of a timing task with a spatial component, we investigate the learning of a spatio-temporal rule in animals. To do so, rats were placed in front of a five-hole nose-poke wall in a Peak Interval (PI) procedure to obtain a reward, with two spatio-temporal combination rules associated with different to-be-timed cues and lighting contexts. We report that, after successful learning of the discriminative task, a single Pavlovian session was sufficient for the animals to learn a new spatio-temporal association. This was seen as evidence for a beneficial transfer to the new spatio-temporal rule, as compared to control animals that did not experience the new spatio-temporal association during the Pavlovian session. The benefit was observed until nine days later. The results are discussed within the framework of adaptation to a change of a complex associative rule involving interval timing processes.



2017 ◽  
Author(s):  
Andrea Ravignani ◽  
Sonja Kotz

Increasing empirical research shows a deep connection between timing processes and neural processing of social information. An integrative theoretical framework for prospective studies in humans was recently proposed, linking timing to sociality. A similar framework guiding research in non-human animals is desirable, ideally encompassing as many taxonomic groups and sensory modalities as possible in order to embrace the diversity of social and timing behaviour across species. Here we expand on a previous theoretical account, introducing this debate to animal behaviour. We suggest adopting an evolutionary perspective on social timing in animals: i.e. a comparative approach to probe the link between temporal and social behaviour across a broad range of animal species. This approach should advance our understanding of animal social timing that is, how social behaviour and timing are mutually affected, and possibly of its evolutionary history in our own lineage. We conclude by identifying outstanding questions and testable hypotheses in animal social timing.



2017 ◽  
Author(s):  
Andrea Ravignani ◽  
Sonja Kotz

Increasing empirical research shows a deep connection between timing processes and neural processing of social information. An integrative theoretical framework for prospective studies in humans was recently proposed, linking timing to sociality. A similar framework guiding research in non-human animals is desirable, ideally encompassing as many taxonomic groups and sensory modalities as possible in order to embrace the diversity of social and timing behaviour across species. Here we expand on a previous theoretical account, introducing this debate to animal behaviour. We suggest adopting an evolutionary perspective on social timing in animals: i.e. a comparative approach to probe the link between temporal and social behaviour across a broad range of animal species. This approach should advance our understanding of animal social timing that is, how social behaviour and timing are mutually affected, and possibly of its evolutionary history in our own lineage. We conclude by identifying outstanding questions and testable hypotheses in animal social timing.



2017 ◽  
Vol 39 (1) ◽  
pp. 26-29
Author(s):  
Dilys J. Freeman ◽  
Barbara J. Meyer

How does a mother supply a key building block of the brain required for neurodevelopment to her fetus in pregnancy? The critical requirement of docosahexaenoic acid (DHA) for fetal brain development, and the poor efficiency of its synthesis in humans, is a tricky metabolic problem to be overcome in pregnant women. Supplying this unique fatty acid to the fetus requires exquisite specificity and timing, processes that can unravel in disease conditions such as pre-eclampsia.



2016 ◽  
Vol 19 (6) ◽  
pp. 1205-1213 ◽  
Author(s):  
Jennifer R. Laude ◽  
Carter W. Daniels ◽  
Jordan C. Wade ◽  
Thomas R. Zentall


Sign in / Sign up

Export Citation Format

Share Document