scholarly journals The essential role of Dnmt1 in gametogenesis in the large milkweed bug Oncopeltus fasciatus

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Joshua T Washington ◽  
Katelyn R Cavender ◽  
Ashley U Amukamara ◽  
Elizabeth C McKinney ◽  
Robert J Schmitz ◽  
...  

Given the importance of DNA methylation in protection of the genome against transposable elements and transcriptional regulation in other taxonomic groups, the diversity in both levels and patterns of DNA methylation in the insects raises questions about its function and evolution. We show that the maintenance DNA methyltransferase, DNMT1, affects meiosis and is essential to fertility in milkweed bugs, Oncopeltus fasciatus, while DNA methylation is not required in somatic cells. Our results support the hypothesis that Dnmt1 is required for the transition of germ cells to gametes in O. fasciatus and that this function is conserved in male and female gametogenesis. They further suggest that DNMT1 has a function independent of DNA methylation in germ cells. Our results raise the question of how a gene so critical in fitness across multiple insect species can have diverged widely across the insect tree of life.

2020 ◽  
Author(s):  
Joshua T. Washington ◽  
Katelyn R. Cavender ◽  
Ashley U. Amukamara ◽  
Elizabeth C. McKinney ◽  
Robert J. Schmitz ◽  
...  

AbstractGiven the importance of DNA methylation in protection of the genome against transposable elements and transcriptional regulation in other taxonomic groups, the diversity in both levels and patterns of DNA methylation in the insects raises questions about its function and evolution. We show that the maintenance DNA methyltransferase, DNMT1, affects meiosis and is essential to fertility in milkweed bugs, Oncopeltus fasciatus, while DNA methylation is not required in somatic cells. Our results support the hypothesis that Dnmt1 is required for the transition of germ cells to gametes in O. fasciatus and that this function is conserved in male and female gametogenesis. They further suggest that DNMT1 has a function independent of DNA methylation in germ cells. Our results raise the question of how a gene so critical in fitness across multiple insect species can have diverged widely across the insect tree of life.


2019 ◽  
Vol 31 (3) ◽  
pp. 509 ◽  
Author(s):  
Minli Yu ◽  
Dongfeng Li ◽  
Wanyan Cao ◽  
Xiaolu Chen ◽  
Wenxing Du

Ten–eleven translocation 1 (Tet1) is involved in DNA demethylation in primordial germ cells (PGCs); however, the precise regulatory mechanism remains unclear. In the present study the dynamics of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in developing PGCs and the role of Tet1 in PGC demethylation were analysed. Results show that 5mC levels dropped significantly after embryonic Day 4 (E4) and 5hmC levels increased reaching a peak at E5–E5.5. Interestingly, TET1 protein was highly expressed during E5 to E5.5, which showed a consistent trend with 5hmC. The expression of pluripotency-associated genes (Nanog, PouV and SRY-box 2 (Sox2)) and germ cell-specific genes (caveolin 1 (Cav1), piwi-like RNA-mediated gene silencing 1 (Piwi1) and deleted in azoospermia-like (Dazl)) was upregulated after E5, whereas the expression of genes from the DNA methyltransferase family was decreased. Moreover, the Dazl gene was highly methylated in early PGCs and then gradually hypomethylated. Knockdown of Tet1 showed impaired survival and proliferation of PGCs, as well as increased 5mC levels and reduced 5hmC levels. Further analysis showed that knockdown of Tet1 led to elevated DNA methylation levels of Dazl and downregulated gene expression including Dazl. Thus, this study reveals the dynamic epigenetic reprogramming of chicken PGCs invivo and the molecular mechanism of Tet1 in regulating genomic DNA demethylation and hypomethylation of Dazl during PGC development.


2018 ◽  
Author(s):  
Adam J. Bewick ◽  
Zachary Sanchez ◽  
Elizabeth C. Mckinney ◽  
Allen J. Moore ◽  
Patricia J. Moore ◽  
...  

AbstractThe function of cytosine (DNA) methylation in insects remains unknown. Here we provide evidence for the functional role of the maintenance DNA methyltransferase 1 (Dnmt1) in an insect using experimental manipulation. Through RNA interference (RNAi) we successfully post-transcriptionally knocked downDnmt1in ovarian tissue of the hemipteranOncopeltus fasciatus(the large milkweed bug). Individuals depleted forDnmt1, and subsequently DNA methylation, failed to reproduce. Eggs were inviable and declined in number, and nuclei structure of follicular epithelium was aberrant. Depletion of DNA methylation did not result in changes in gene or transposable element expression revealing an important function of DNA methylation seemingly not contingent on gene expression. Our work provides direct experimental evidence for a functional role ofDnmt1and DNA methylation independent of gene expression in insects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Krystyna Ślaska-Kiss ◽  
Nikolett Zsibrita ◽  
Mihály Koncz ◽  
Pál Albert ◽  
Ákos Csábrádi ◽  
...  

AbstractTargeted DNA methylation is a technique that aims to methylate cytosines in selected genomic loci. In the most widely used approach a CG-specific DNA methyltransferase (MTase) is fused to a sequence specific DNA binding protein, which binds in the vicinity of the targeted CG site(s). Although the technique has high potential for studying the role of DNA methylation in higher eukaryotes, its usefulness is hampered by insufficient methylation specificity. One of the approaches proposed to suppress methylation at unwanted sites is to use MTase variants with reduced DNA binding affinity. In this work we investigated how methylation specificity of chimeric MTases containing variants of the CG-specific prokaryotic MTase M.SssI fused to zinc finger or dCas9 targeting domains is influenced by mutations affecting catalytic activity and/or DNA binding affinity of the MTase domain. Specificity of targeted DNA methylation was assayed in E. coli harboring a plasmid with the target site. Digestions of the isolated plasmids with methylation sensitive restriction enzymes revealed that specificity of targeted DNA methylation was dependent on the activity but not on the DNA binding affinity of the MTase. These results have implications for the design of strategies of targeted DNA methylation.


2020 ◽  
Author(s):  
Jing Wei ◽  
Jia Cheng ◽  
Nicholas J Waddell ◽  
Zi-Jun Wang ◽  
Xiaodong Pang ◽  
...  

Abstract Emerging evidence suggests that epigenetic mechanisms regulate aberrant gene transcription in stress-associated mental disorders. However, it remains to be elucidated about the role of DNA methylation and its catalyzing enzymes, DNA methyltransferases (DNMTs), in this process. Here, we found that male rats exposed to chronic (2-week) unpredictable stress exhibited a substantial reduction of Dnmt3a after stress cessation in the prefrontal cortex (PFC), a key target region of stress. Treatment of unstressed control rats with DNMT inhibitors recapitulated the effect of chronic unpredictable stress on decreased AMPAR expression and function in PFC. In contrast, overexpression of Dnmt3a in PFC of stressed animals prevented the loss of glutamatergic responses. Moreover, the stress-induced behavioral abnormalities, including the impaired recognition memory, heightened aggression, and hyperlocomotion, were partially attenuated by Dnmt3a expression in PFC of stressed animals. Finally, we found that there were genome-wide DNA methylation changes and transcriptome alterations in PFC of stressed rats, both of which were enriched at several neural pathways, including glutamatergic synapse and microtubule-associated protein kinase signaling. These results have therefore recognized the potential role of DNA epigenetic modification in stress-induced disturbance of synaptic functions and cognitive and emotional processes.


Reproduction ◽  
2010 ◽  
Vol 140 (3) ◽  
pp. 411-423 ◽  
Author(s):  
Philippe Arnaud

The cis-acting regulatory sequences of imprinted gene loci, called imprinting control regions (ICRs), acquire specific imprint marks in germ cells, including DNA methylation. These epigenetic imprints ensure that imprinted genes are expressed exclusively from either the paternal or the maternal allele in offspring. The last few years have witnessed a rapid increase in studies on how and when ICRs become marked by and subsequently maintain such epigenetic modifications. These novel findings are summarised in this review, which focuses on the germline acquisition of DNA methylation imprints and particularly on the combined role of primary sequence specificity, chromatin configuration, non-histone proteins and transcriptional events.


Author(s):  
Daniel M. Sapozhnikov ◽  
Moshe Szyf

AbstractAlthough associations between DNA methylation and gene expression were established four decades ago, the causal role of DNA methylation in gene expression remains unresolved. Different strategies to address this question were developed; however, all are confounded and fail to disentangle cause and effect. We developed here a highly effective new method using only deltaCas9(dCas9):gRNA site-specific targeting to physically block DNA methylation at specific targets in the absence of a confounding flexibly-tethered enzymatic activity, enabling examination of the role of DNA methylation per se in living cells. We show that the extensive induction of gene expression achieved by TET/dCas9-based targeting vectors is confounded by DNA methylation-independent activities, inflating the role of DNA methylation in the promoter region. Using our new method, we show that in several inducible promoters, the main effect of DNA methylation is silencing basal promoter activity. Thus, the effect of demethylation of the promoter region in these genes is small, while induction of gene expression by different inducers is large and DNA methylation independent. In contrast, targeting demethylation to the pathologically silenced FMR1 gene targets robust induction of gene expression. We also found that standard CRISPR/Cas9 knockout generates a broad unmethylated region around the deletion, which might confound interpretation of CRISPR/Cas9 gene depletion studies. In summary, this new method could be used to reveal the true extent, nature, and diverse contribution to gene regulation of DNA methylation at different regions.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1325
Author(s):  
Fenfen Li ◽  
Xin Cui ◽  
Jia Jing ◽  
Shirong Wang ◽  
Huidong Shi ◽  
...  

Obesity results from a chronic energy imbalance due to energy intake exceeding energy expenditure. Activation of brown fat thermogenesis has been shown to combat obesity. Epigenetic regulation, including DNA methylation, has emerged as a key regulator of brown fat thermogenic function. Here we aimed to study the role of Dnmt3b, a DNA methyltransferase involved in de novo DNA methylation, in the regulation of brown fat thermogenesis and obesity. We found that the specific deletion of Dnmt3b in brown fat promotes the thermogenic and mitochondrial program in brown fat, enhances energy expenditure, and decreases adiposity in female mice fed a regular chow diet. With a lean phenotype, the female knockout mice also exhibit increased insulin sensitivity. In addition, Dnmt3b deficiency in brown fat also prevents diet-induced obesity and insulin resistance in female mice. Interestingly, our RNA-seq analysis revealed an upregulation of the PI3K-Akt pathway in the brown fat of female Dnmt3b knockout mice. However, male Dnmt3b knockout mice have no change in their body weight, suggesting the existence of sexual dimorphism in the brown fat Dnmt3b knockout model. Our data demonstrate that Dnmt3b plays an important role in the regulation of brown fat function, energy metabolism and obesity in female mice.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 157-170 ◽  
Author(s):  
D Adam Mason ◽  
Robert J Fleming ◽  
David S Goldfarb

Abstract Importin α’s mediate the nuclear transport of many classical nuclear localization signal (cNLS)-containing proteins. Multicellular animals contain multiple importin α genes, most of which fall into three conventional phylogenetic clades, here designated α1, α2, and α3. Using degenerate PCR we cloned Drosophila melanogaster importin α1, α2, and α3 genes, demonstrating that the complete conventional importin α gene family arose prior to the split between invertebrates and vertebrates. We have begun to analyze the genetic interactions among conventional importin α genes by studying their capacity to rescue the male and female sterility of importin α2 null flies. The sterility of α2 null males was rescued to similar extents by importin α1, α2, and α3 transgenes, suggesting that all three conventional importin α’s are capable of performing the important role of importin α2 during spermatogenesis. In contrast, sterility of α2 null females was rescued only by importin α2 transgenes, suggesting that it plays a paralog-specific role in oogenesis. Female infertility was also rescued by a mutant importin α2 transgene lacking a site that is normally phosphorylated in ovaries. These rescue experiments suggest that male and female gametogenesis have distinct requirements for importin α2.


Sign in / Sign up

Export Citation Format

Share Document