INCREMENTAL DYNAMIC ANALYSIS OF FIRE-EXPOSED BASE-ISOLATED R.C. FRAMED BUILDINGS SUBJECTED TO NEAR-FAULT GROUND MOTIONS

Author(s):  
Fabio Mazza ◽  
Fabio Alesina
2013 ◽  
Vol 29 (4) ◽  
pp. 1477-1494 ◽  
Author(s):  
Zhe Qu ◽  
Shoichi Kishiki ◽  
Toshiyuki Nakazawa

The pounding of retaining walls forms a potential risk of degrading the performance of seismically base-isolated buildings subjected to strong, especially near-fault, earthquake ground motions. Incremental dynamic analysis is employed to generate the so-called gap graph, in which two characteristic gap sizes of a base-isolated building are related with the isolation period of the building and the strengthof the superstructure. Thegapgraph canbe usedto evaluate the required gap size for a base-isolated building to have certain collapse performance. By means of gap graphs, the interdependent relations of gap size with other important factors that influence the seismic performance of the base-isolated building are examined. In particular, the results show that near-fault pulse-like ground motions are likely to impose much higher demand for the isolation gap than far-field ones.


Author(s):  
Nik Zainab Nik Azizan ◽  
Taksiah A. Majid ◽  
Fadzli Mohamed Nazri ◽  
Damodar Maity ◽  
Junaidah Abdullah

Author(s):  
Behrouz Asgarian ◽  
Azadeh Ajamy

Fixed offshore platforms in seismic active areas may be subjected to strong ground motions, causing the platform to undergo deformation well into the inelastic range. In this paper, incremental dynamic analysis (IDA) of jacket type offshore platforms subjected to earthquake was performed in order to study the linear and nonlinear dynamic behavior of this type of structures. IDA is a parametric analysis method that has been recently presented to estimate structural performance under seismic loads. By using incremental dynamic analysis of jacket type offshore platforms, the assessment of demand and capacity can be carried out. The method was used to predict nonlinear behavior of three newly designed jacket type offshore platforms subjected to strong ground motions. The engineering demand parameters of the platforms in terms of story drifts and intermediate elevation maximum displacement for different records were compared. This method was used for the performance calculations (immediate occupancy, collapse prevention, and global dynamic instability) needed for performance-based earthquake engineering of the above mentioned platforms. Two different behaviors were observed for the third platform in the X and Y directions. Particular attention has to be paid for the seismic design of this kind of platform. The results of jacket type offshore platforms incremental dynamic analysis shows that the method is a valuable tool for studying dynamic behavior in a nonlinear range of deformation. Because of high uncertainty in the nonlinear behavior of this type of structures, it is recommended to use this method for the assessment and requalification of existing jacket type offshore platforms subjected to earthquake.


2021 ◽  
Author(s):  
Sahman Soleimani ◽  
Abdolreza Sarvghad Moghadam ◽  
Armin Aziminejad

Abstract Bidirectional energy-based pushover (BEP) procedure is expanded in this paper to predict approximate incremental dynamic analysis (IDA) results of medium- and high-rise structures. BEP is a unique approach in the sense that it provides approximate IDA curves under the simultaneous effect of two horizontal components of ground motions and is applicable to both symmetric- and asymmetric-plan buildings. The method has already proved to be useful in low-rise buildings, and this study aims to evaluate its suitability for mid- and high-rise structures. Six structural models were considered in this evaluation in two groups of 9- and 20-story buildings, with each group consisting of a symmetric, a one-way asymmetric, and a two-way asymmetric-plan building. The results revealed that the method was sufficiently accurate to provide approximate IDA curves for all structural models. The method had similar accuracy in the asymmetric models as it did in the symmetric models, although the accuracy slightly decreased as the height of the building increased. BEP also provided good estimates of the demands in both ‘flexible’ and ‘stiff sides’ of the asymmetric buildings as well as the demands over the height of the buildings.


2006 ◽  
Vol 22 (2) ◽  
pp. 367-390 ◽  
Author(s):  
Erol Kalkan ◽  
Sashi K. Kunnath

This paper investigates the consequences of well-known characteristics of near-fault ground motions on the seismic response of steel moment frames. Additionally, idealized pulses are utilized in a separate study to gain further insight into the effects of high-amplitude pulses on structural demands. Simple input pulses were also synthesized to simulate artificial fling-step effects in ground motions originally having forward directivity. Findings from the study reveal that median maximum demands and the dispersion in the peak values were higher for near-fault records than far-fault motions. The arrival of the velocity pulse in a near-fault record causes the structure to dissipate considerable input energy in relatively few plastic cycles, whereas cumulative effects from increased cyclic demands are more pronounced in far-fault records. For pulse-type input, the maximum demand is a function of the ratio of the pulse period to the fundamental period of the structure. Records with fling effects were found to excite systems primarily in their fundamental mode while waveforms with forward directivity in the absence of fling caused higher modes to be activated. It is concluded that the acceleration and velocity spectra, when examined collectively, can be utilized to reasonably assess the damage potential of near-fault records.


Sign in / Sign up

Export Citation Format

Share Document