Laterally Placed CDRA with Triangular Notches for Ultra Wideband Applications

Frequenz ◽  
2017 ◽  
Vol 72 (1-2) ◽  
pp. 1-6
Author(s):  
Dileep Sankaranarayanan ◽  
Duggirala Venkata Kiran ◽  
Biswajeet Mukherjee

AbstractIn this paper, a Coaxial probe-fed Laterally placed Cylindrical Dielectric Resonator Antenna (LCDRA) with symmetrical triangular notches is presented. The lateral surface of the Cylindrical Dielectric Resonator Antenna (CDRA) is kept on the ground plane with its longitudinal axis parallel to the ground plane. LCDRA has a lower resonant frequency than the CDRA and it offers considerably wider impedance bandwidth than CDRA. Finally, two symmetrical triangular notches are introduced on the two edges of LCDRA which is perpendicular to the axis to further improve the impedance bandwidth. The proposed antenna offers a wide impedance bandwidth (

2016 ◽  
Vol 9 (3) ◽  
pp. 621-627 ◽  
Author(s):  
Idris Messaoudene ◽  
Tayeb A. Denidni ◽  
Abdelmadjid Benghalia

In this paper, a microstrip-fed U-shaped dielectric resonator antenna (DRA) is simulated, designed, and fabricated. This antenna, in its simple configuration, operates from 5.45 to 10.8 GHz. To enhance its impedance bandwidth, the ground plane is first modified, which leads to an extended bandwidth from 4 to 10.8 GHz. Then by inserting a rectangular metallic patch inside the U-shaped DRA, the bandwidth is increased more to achieve an operating band from 2.65 to 10.9 GHz. To validate these results, an experimental antenna prototype is fabricated and measured. The obtained measurement results show that the proposed antenna can provide an ultra-wide bandwidth and a symmetric bidirectional radiation patterns. With these features, the proposed antenna is suitable for ultra-wideband applications.


2021 ◽  
Vol 25 (1) ◽  
pp. 11-19
Author(s):  
Mohamed Debab ◽  
◽  
Amina Bendaoudi ◽  
Zoubir Mahdjoub ◽  
◽  
...  

In this article, a dual-band notched ultra-wideband (UWB) dielectric resonator antenna is proposed. The antenna structure consists of Crescent Moon Dielectric Resonator (CMDR) fed by a stepped microstrip monopole printed antenna, partial ground plane, and an I-shaped stub. The Crescent Moon dielectric resonator is placed on the microstrip monopole printed antenna to achieve wide impedance bandwidth, and the I-shaped stub is utilized to improve impedance bandwidth for the WiMAX band. A comprehensive parametric study is carried out using HFSS software to achieve the optimum antenna performance and optimize the bandwidth of the proposed antenna. The entire band is useful with two filtered bands at 5.5 GHz and 6.8 GHz by the creation of notches. The band’s rejection, WLAN band (5.2–5.7 GHz), and the downlink frequency band of ITU 7 GHz-band for satellite communication (6.5–7.3 GHz) is realized by inserting G-shaped and C-shaped slots in the ground. The simulation results demonstrate that the proposed CMDR antenna achieves satisfactory UWB performance, with an impedance bandwidth of around 88.7%, covers the frequency band of 3.2 - 8.3 GHz, excluding a rejection band for the WLAN and ITU 7 GHz band. The CMDR is simulated using HFSS and CST high-frequency simulators.


2019 ◽  
Vol 8 (3) ◽  
pp. 57-63
Author(s):  
A. Zitouni ◽  
N. Boukli-Hacene

In this article, a novel T-shaped compact dielectric resonator antenna for ultra-wideband (UWB) application is presented and studied. The proposed DRA structure consists of T-shaped dielectric resonator fed by stepped microstrip monopole printed antenna, partial ground plane and an inverted L-shaped stub. The inverted L-shaped stub and parasitic strip are utilized to improve impedance bandwidth. A comprehensive parametric study is carried out using HFSS software to achieve the optimum antenna performance and optimize the bandwidth of the proposed antenna. From the simulation results, it is found that the proposed antenna structure operates over a frequency range of 3.45 to more than 28 GHz with a fractional bandwidth over 156.12%, which covers UWB application, and having better gain and radiation characteristics.


Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
Pinku Ranjan ◽  
Ravi Kumar Gangwar

AbstractIn this article, a tri-sector cylindrical dielectric resonator antenna (t-CDRA) has been introduced by splitting CDRA into three uniform sectors and all three uniform sectors are packed together in a compact way on a metallic ground plane. A coaxial probe feed is used to excite the proposed composite t-CDRA at the center position. Multi-segmentation approach has been applied for further improvement in bandwidth of proposed t-CDRA. The proposed composite t-CDRA has been designed using HFSS simulation software and analyzed using theoretical analysis. The prototype of t-CDRA, three elements t-CDRA and three elements dual segment t-CDRA has been fabricated for measurement. The input characteristics, near field, far field distribution of the proposed t-CDRAs have been studied through HFSS simulation software and their results are compared with corresponding experimental results. Proposed segmented t-CDRA has wide impedance bandwidth (|S


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Parikshit Vasisht ◽  
Robert Mark ◽  
Neela Chattoraj

Abstract A new wideband omni-directional compact rectangular ring dielectric resonator antenna (RRDRA) fused with slotted bevel shaped patch antenna is presented for the ultra-wideband (UWB) applications. The RRDR (rectangular ring dielectric resonator) is employed to generate lower order radiating modes with merge with the modes of patch to obtain high impedance bandwidth in UWB region. Further, RRDR use led to reduction in overall conductor loss to achieve high radiation efficiency. The proposed RRDRA structure achieved an impedance bandwidth covering the frequency range from 2.6–15.6 GHz, or ∼142%. The measured results show that the proposed DRA provides peak measured gain of 6.2 dBi and radiation efficiency of 90% at resonant frequency 6.3 GHz with stable omni-directional monopole like radiation patterns with low cross-polarization. The proposed antenna has a short ground plane of size 40 × 40 × 11.6 mm3 or ∼0.34λ 0 × 0.34λ 0 × 0.10λ 0 at 2.6 GHz.


2015 ◽  
Vol 8 (2) ◽  
pp. 335-340
Author(s):  
Seyyed Hadi Seyyedhatami ◽  
Ramazan Ali Sadeghzadeh

A new simple compact ultra-wideband (UWB) dielectric resonator antenna is presented. The antenna consists of a modified stepped microstrip-fed monopole printed antenna loaded with a rectangular dielectric resonator, truncated ground plane, and a parasitic strip underneath the dielectric resonator (DR). Using an optimized truncated ground plane and a combination of stepped feed line with DR an ultra-wide impedance bandwidth of 153% for (∣S11∣ ≤ −10 dB), covering the frequency range of (3.7–28 GHz) is achieved. The added parasitic strip can improve the radiation pattern, especially at high frequencies. The proposed antenna covers almost the entire UWB (3.1–10.6 GHz), Ku (12.4–18 GHz), and K (18–26.6 GHz) frequency bands. Also this antenna has an omnidirectional and stable radiation pattern over the whole operating frequency range and a compact size of (15 × 20 × 5.8 mm3) that make it suitable for wideband wireless system applications. This structure is light weight and can be easily fabricated. A prototype is built and measured. The simulated and measured results are in good agreement.


This paper presents a novel, compact Ultra Wide Band , Asymmetric Ring Rectangular Dielectric Resonator Antenna (ARRDRA), which is a unique combination of Thin Dielectric Resonator (DR), Fork shape patch and defective ground structure. The base of the proposed antenna is its Hybrid structure, which generates fundamental TM, TE and higher order modes that yields an impedance bandwidth of 119%. Proposed antenna provides a frequency range from 4.2 to 16.6 GHz with a stable radiation pattern and low cross polarization levels. Peak gain of 5.5 dB and average efficiency of 90% is obtained by the design. Antenna is elongated on a FR4 substrate of dimension 20 x 24x 2.168 mm3 and is particularly suitable for C band INSAT, Radio Altimeter, WLAN, Wi-Fi for high frequencies. Ease in fabrication due to simplicity, compactness, stable radiation pattern throughout the entire bandwidth are the key features of the presented design. Inclusion of Defective ground structure and asymmetric ring not only increases the bandwidth but also stabilize the gain and efficiency due to less surface current. Presented design launch an Ultra Wide Band antenna with sufficient band rejection at 4.48-5.34 and 5.64-8.33 GHz with stable radiation pattern and high gain.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Xuping Li ◽  
Yabing Yang ◽  
Fei Gao ◽  
Hanqing Ma ◽  
Xiaowei Shi

A compact dielectric resonator antenna (DRA) suitable for wideband applications is presented in this paper. The proposed antenna is mainly composed by a notched cylindrical dielectric resonator (DR) coated with a metal surface on the top and a finite ground plane where the presented DR is placed. This antenna is very simple in structure and has a very low overall height of0.14λminat its lowest operation frequency. A comprehensive parametric study is carried out based on Ansoft HFSS to optimize the bandwidth. The proposed antenna has been successfully simulated, optimized, fabricated, and measured. The measurement results demonstrate that the proposed design produces an impedance bandwidth of more than 75%, ranging from 2.9 GHz to 6.7 GHz for the reflection coefficient less than −10 dB. In particular, consistent broadside radiation patterns, stable gain, and high radiation efficiency are also obtained within the operation frequency band.


Author(s):  
Devansh Sinha ◽  
Mohit Vyas ◽  
Sanjay Singh Kushwah

In this paper a Dielectric resonator antenna (DRA) consists of a rectangular geometry and a printed rectangular patch on top of it in order to achieve better performance and operation without significant increase in antenna size. DRA structure is proposed at a height of 2 mm from the ground plane and patch incorporated at the height of 3.638 mm. This work is mainly focused on increasing the potential parameters of DRA and analyze high frequency band. The proposed antenna is designed to resonate at 25 GHz and by varying the DRA size ‘a, then the simulated results shows variation in Return Loss. The impedance bandwidth of the DRA (23.417 GHz-26.961 GHz) and return loss is 26.543951dB.The proposed DRA is analyzed and design using CST-MSW (2010). The simulated result shows the Far field, smith chart. We have estimated the wavelength, frequency, bandwidth, Return loss and directivity.                                      


Author(s):  
Dishant Khosla ◽  
Kulwinder Singh Malhi

Background: Agriculture sector is one of the prime and widely spread sectors. So to make it autonomous and increase yield, we require a major technological improvement. The only solution to make advancement is with the use of wireless sensor networks. Internet of Things in this field is used to provide connectivity to all real-time sensors and to collect that data in computer-based systems without human involvement. Objective: IoT based system is used to monitor physical and environmental conditions of agriculture field through a network of wireless sensor. Here, a novel ultra-wideband Dielectric Resonator antenna is designed that is used in Wi-Fi for transmission of data received from sensors. The antenna designed should be easy to fabricate and compact in size and should provide high data rates. The complete designed system should be reliable and cost effective one. Method: A proposed IoT based system monitors physical and environmental conditions using wireless sensor network consisting of power supply, soil moisture sensor (FC-28), humidity sensor (LM-35), temperature sensor (HR-202), water level sensor, ARM 7 processor, liquid crystal display (LCD), Relay, motor and Wi-Fi module that is installed at remote locations and connected to the main system comprises of a novel ultra-wideband Dielectric Resonator antenna. Results: The designed WSN based IoT system for agriculture application monitors temperature, humidity, soil moisture, and water level in the field. For Wi-Fi module implementation ultra-wideband inverted sigmoid shaped DRA is designed that provides an impedance bandwidth of 36.46 % at 6.226 GHz (5.51 - 7.78 GHz). The designed antenna provides a peak gain of 5.44 dB at a resonant frequency of 6.226 GHz. Conclusion: The proposed IoT based system is used to monitors physical and environmental conditions like soil moisture, humidity, temperature and water level and sends the data through Wi-Fi module comprising of an ultra-wideband Dielectric Resonator antenna. The designed antenna is compact and can be easily fabricated using printed circuit board technology. The complete system is cost-effective and can be easily implemented.


Sign in / Sign up

Export Citation Format

Share Document