scholarly journals DPM1 expression as a potential prognostic tumor marker in hepatocellular carcinoma

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10307
Author(s):  
Ming Li ◽  
Shengli Xia ◽  
Ping Shi

Background Altered glycosylation of proteins contributes to tumor progression. Dolichol phosphate mannose synthase (DPMS), an essential mannosyltransferase, plays a central role in post-translational modification of proteins, including N-linked glycoproteins, O-mannosylation, C-mannosylation and glycosylphosphatidylinositol anchors synthesis. Little is known about the function of DPMS in liver cancer. Methods The study explored the roles of DPMS in the prognosis of hepatocellular carcinoma using UALCAN, Human Protein Atlas, GEPIA, cBioPortal and Metascape databases. The mRNA expressions of DPM1/2/3 also were detected by quantitative real-time PCR experiments in vitro. Results The transcriptional and proteinic expressions of DPM1/2/3 were both over-expressed in patients with hepatocellular carcinoma. Over-expressions of DPMS were discovered to be dramatically associated with clinical cancer stages and pathological tumor grades in hepatocellular carcinoma patients. In addition, higher mRNA expressions of DPM1/2/3 were found to be significantly related to shorter overall survival in liver cancer patients. Futhermore, high genetic alteration rate of DPMS (41%) was also observed in patients with liver cancer, and genetic alteration in DPMS was associated with shorter overall survival in hepatocellular carcinoma patients. We also performed quantitative real-time PCR experiments in human normal hepatocytes and hepatoma cells to verify the expressions of DPM1/2/3 and results showed that the expression of DPM1 was significantly increased in hepatoma cells SMMC-7721 and HepG2. Conclusions Taken together, these results suggested that DPM1 could be a potential prognostic biomarker for survivals of hepatocellular carcinoma patients.

2021 ◽  
Vol 11 ◽  
Author(s):  
Dong Chen ◽  
Yaqin Wang ◽  
Feiya Yang ◽  
Adili Keranmu ◽  
Qingxin Zhao ◽  
...  

An increasing number of studies have shown that circRNAs are closely related to the carcinogenesis and development of prostate cancer (PCa). However, little is known about the effect of the biological functions of circRNAs on the enzalutamide resistance of PCa. Through bioinformatic analysis and experiments, we investigated the expression pattern of circRNAs in enzalutamide-resistant PCa cells. Quantitative real-time PCR was used to detect the expression of circRAB3IP, and plasmids that knock down or overexpress circRAB3IP were used to evaluate its effect on the enzalutamide sensitivity of PCa cells. Mechanistically, we explored the potential regulatory effects of eIF4A3 and LEF1 on the biogenesis of circRAB3IP. Our in vivo and in vitro data indicated that increased expression of circRAB3IP was found in enzalutamide-resistant PCa, and knockdown of circRAB3IP significantly enhanced enzalutamide sensitivity in PCa cells. However, upregulation of circRAB3IP resulted in the opposite effects. Further mechanistic research demonstrated that circRAB3IP could regulate the expression of serum and glucocorticoid-regulated kinase 1 (SGK1) by serving as a sponge that directly targets miR-133a-3p/miR-133b. Then, we showed that circRAB3IP partially exerted its biological functions via SGK1 signaling. Furthermore, we discovered that eIF4A3 and LEF1 might increase circRAB3IP expression in PCa.


2009 ◽  
Vol 58 (5) ◽  
pp. 648-655 ◽  
Author(s):  
Kristel Lourdault ◽  
Florence Aviat ◽  
Mathieu Picardeau

The dynamics of leptospirosis infection have been poorly studied. The purpose of this study was to determine the LD50, rate of bacterial dissemination, histopathology and antibody responses against leptospira following inoculation with the highly virulent Leptospira interrogans Fiocruz L1-130 strain in a guinea pig model of leptospirosis. Three routes of infection (intraperitoneal, conjunctival and subcutaneous inoculation) were used to establish disease in guinea pigs. The size and kinetics of leptospiral burdens in the blood and tissues of infected animals were determined over a 1 week course of infection using quantitative real-time PCR (qPCR). Bacteraemia peaked at day 5 post-infection reaching more than 5×104 leptospires ml−1. The highest spirochaetal load was found in the liver and kidneys, and was associated with alterations in organ tissues and a decline in liver and kidney functions. In contrast, lesions and bacteria were not detected in guinea pigs infected with an avirulent strain derived from a high-passage-number in vitro-passaged variant of the Fiocruz L1-130 strain. The use of qPCR supports the findings of earlier studies and provides an easy and reliable method for the quantification of L. interrogans in the tissues of infected animals. qPCR will be used in future studies to evaluate the efficacy of vaccine candidates against leptospirosis and the virulence of selected L. interrogans mutants relative to the parental strain.


Epigenomics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 513-530
Author(s):  
Xi Zeng ◽  
Chao Tan ◽  
Meile Mo ◽  
Xiaoling Qin ◽  
Xiaoyun Ma ◽  
...  

Aim: To explore the expression profiles and functions of circRNAs in hepatocellular carcinoma (HCC). Materials & methods: We obtained circRNA expression profiles through RNA sequencing. Expression levels of circRNAs were confirmed by quantitative real-time PCR. The effects on HCC progression were determined using Cell Counting Kit 8, clone formation and transwell assays. Results: We identified 114 upregulated and 144 downregulated circRNAs in HCC tissues. The results of quantitative real-time PCR showed that circGNAO1, circRNF180 and circMERTK were significantly downregulated in HCC tissues, whereas circSNX6 was significantly upregulated. CircRNF180 was associated with microvascular invasion. Overexpression of circRNF180 inhibits the proliferation, colony formation, migration and invasion of HCC cells. Conclusion: CircRNF180 may function as a tumor suppressor and could serve as a potential biomarker and therapeutic target in HCC.


2009 ◽  
Vol 10 (1) ◽  
pp. 57 ◽  
Author(s):  
Carme Gubern ◽  
Olivia Hurtado ◽  
Rocío Rodríguez ◽  
Jesús R Morales ◽  
Víctor G Romera ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 515-515
Author(s):  
Sara Tagliaferri ◽  
Francesca Morandi ◽  
Paolo Lunghi ◽  
Simona Colla ◽  
Mirca Lazzaretti ◽  
...  

Abstract Multiple myeloma (MM) cells produce several angiogenic molecules as VEGF, Angiopoietin-1 (Ang-1), interleukin-8 (IL-8) and osteopontin (OPN), however the molecular mechanisms underlying the angiogenic switch are not completely elucidated. The candidate tumor suppressor gene inhibitor of growth family member 4 (p29ING4) has been recently implicated in solid tumors as a repressor of angiogenesis and tumor growth through the suppression of angiogenic related molecules including interleukin-8 (IL-8) and the hypoxia inducible factor (HIF)-1 alpha. In this study we investigate the potential involvement of p29ING4 in the angiogenic switch in MM. First using quantitative real time PCR we compared p29ING4 with VEGF, Ang-1, IL-8 and OPN mRNA levels in eight human myeloma cell lines (HMCLs). A significantly negative correlation was observed between ING4 and IL-8 and a trend of correlation with OPN. Following we transfected HMCLs JJN3, OPM-2 and RPMI-8226 with specific siRNA to completely block the expression of p29ING4 checking the effect on the expression and production of the myeloma-related angiogenic molecules VEGF, Ang-1, IL-8 and OPN by quantitative real time PCR and ELISA assay. p29ING4 suppression in HMCLs did not affect VEGF and Ang-1 production but induced a strong up-regulation of IL-8 mRNA and IL-8 protein secretion. Similarly an induction of OPN mRNA expression as well as OPN secretion was induced by siRNA anti-p29ING4. Moreover conditioned media of HMCLs transfected with siRNA anti p29ING4 significantly increased vessel formation in an experimental in vitro model of angiogenesis (ANGIO kit) as compared to controls. Further we investigate the role of p29ING4 in the production of angiogenic molecule by MM cells in hypoxic condition compared to normoxic one as well as its potential relationship with HIF-1alpha system. Hypoxia induced HIF-1alpha expression at nuclear level and its activity in HMCLs and p29ING4 suppression by siRNA further induced HIF-1alpha transcriptional activity with an increase of its target gene Nip-3 in HMCLs. In turn the block of HIF1-alpha by specific siRNA up-regulated p29ING4 and suppressed IL-8 and OPN mRNA expression by HMCLs suggesting a relationship between p29ING4 and HIF-1alpha activity. These in vitro observations have been extended in vivo by the finding of a significant correlation between bone marrow (BM) plasma IL-8 levels and p29ING4 mRNA expression in purified MM cells obtained from 40 newly diagnosed MM patients (R=−0.58 Spearman’s 2-tailed test: p=0.04), consistently MM patients with higher BM IL-8 levels have a significantly lower p29ING4 mRNA levels. Similarly MM patients positive for OPN expression with high OPN BM levels had a significant lower p29ING4 levels (p=0.02). Finally we found that MM patients with high microvalscular density (MVD>30) have significant lower p29ING4 levels as compared to those with low MVD (<30) (p=0.04) and that MM patients with histological high grade had significant lower p29ING4 mRNA levels (Mann-Whitney 2-tailed: p=0.05). In conclusion, our data indicate that the tumor suppressor p29ING4 regulate the production of angiogenic molecules by MM cells both in normoxic and hypoxic conditions being involved in MM-induced angiogenesis and potentially in tumor progression.


2020 ◽  
Vol 9 ◽  
pp. 1896
Author(s):  
Maedeh Olya ◽  
Hamid Zaferani Arani ◽  
Amirhossein Shekarriz ◽  
Amirhossein Zabolian ◽  
Hadi Zare Marzouni ◽  
...  

Background: Hepatocellular carcinoma is the most common type of liver cancer which arises from the main cells in the liver. We address many studies investigating anti-cancer role of hypericin, however the proposing corresponding molecular pathway seems to be still a debate. Therefore, the present study aimed to evaluate the apoptotic effect of hypericin on the Huh7 as the liver cancer cell line and its relation with the gate keeper gene P53. Materials and Methods: In this study, the Huh7 cell line and fibroblast cells (as control group) were treated with different concentrations of hypericin for 24 and 48 hours. Detection of cell death was performed by MTT assay and flow cytometry. The expression of bax, bcl2 and p53 mRNAs was evaluated by Real-time PCR. Also, Immunocytochemistry (ICC) analysis was used for further evaluation of P53expression. Results: The results showed that hypericin has a dose-dependent cytotoxic effect on the Huh7 cell line, with no or marginal effect on fibroblastic cells. According to flow cytometry results, about 53%cells underwent apoptosis after exposure to LD50 of hypericin for 24 hours. Real-time PCR data demonstrated that the pro-apoptotic genes Bax and P53 expression level increased. Expectedly ICC results confirmed the up-regulation of P53 proteins in treated samples. Conclusion: Our results indicate the cytotoxicity of hypericin on Huh7 cells by affecting the expression of the gate keeper gene P53; furthermore it is suggested that this herb can be utilized simultaneously with modalities targeting P53 up-regulation or related molecular pathways. [GMJ.2020;9:e1896]


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5078-5078
Author(s):  
Timothy J. Molloy ◽  
Baulch-Brown Cindy ◽  
Yi-Mo Deng ◽  
Andrew Spencer ◽  
David F. Ma

Abstract We have shown in vitro that multiple myeloma (MM) cells can be destroyed by treating them with the mevalonate pathway inhibitors zoledronate and fluvastatin. While the efficacy of these compounds singly and combination have been demonstrated, their exact modes of action remain largely unknown. The present study aimed to use microarray and quantitative real-time PCR (QRT-PCR) techniques to analyse gene expression in treated myeloma cells to identify novel genes and pathways involved in the anti-myeloma action of these compounds. The human MM cell line NCI-H929 was treated with zoledronate and fluvastatin singly and in combination, and RNA was extracted and used to interrogate oligonucleotide microarrays consisting of 19,000 features representing known and unknown genes. Quantitative real-time PCR was subsequently used to confirm the expression of several genes of interest. Flow cytometry with Annexin V FITC staining was used to detect apoptosis. It was observed that genes related to apoptosis (caspases and p53-related genes), cell cycle control (cyclins), GTPase signalling (Rabs), and growth and proliferation (growth factors) were particularly affected by zoledronate and fluvastatin, and some of these genetic effects were synergistic when a combination of zoledronate and fluvastatin was used. QRT-PCR confirmed the effects on the caspase- and p53-related apoptotic pathways, and these effects were correlated with increased apoptosis in the myeloma cells. The mevalonate pathway inhibitors fluvastatin and zoledronate are highly efficient at killing MM cells, and their effects appear to be synergistic. Our microarray and QT-PCR analyses demonstrated that the expression of specific groups of genes important to the survival and proliferation of myeloma cells are affected by these compounds. p53 and caspase-dependent pathways appear to be the key apoptotic cascades stimulated. Insights into the mechanisms of these novel therapeutics are important as they might help to define their roles in the treatment of multiple myeloma.


2009 ◽  
Vol 2 (1) ◽  
pp. 246 ◽  
Author(s):  
Katrien Smits ◽  
Karen Goossens ◽  
Ann Van Soom ◽  
Jan Govaere ◽  
Maarten Hoogewijs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document