scholarly journals Sevoflurane preconditioning attenuates hypoxia/reoxygenation injury of H9c2 cardiomyocytes by activation of the HIF-1/PDK-1 pathway

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10603
Author(s):  
Tianliang Hou ◽  
Haiping Ma ◽  
Haixia Wang ◽  
Chunling Chen ◽  
Jianrong Ye ◽  
...  

Background Sevoflurane preconditioning (SPC) can provide myocardial protective effects similar to ischemic preconditioning (IPC). However, the underlying molecular mechanism of SPC remains unclear. Studies confirm that hypoxia-inducible factor-1 (HIF-1) can transform cells from aerobic oxidation to anaerobic glycolysis by activating the switch protein pyruvate dehydrogenase kinase-1 (PDK-1), thus providing energy for the normal life activities of cells under hypoxic conditions. The purpose of this study was to investigate whether the cardioprotective effects of SPC are associated with activation of the HIF-1a/PDK-1 signal pathway. Methods The H9c2 cardiomyocytes hypoxia/reoxygenation model was established and treated with 2.4% sevoflurane at the end of equilibration. Lactate dehydrogenase (LDH) level, cell viability, cell apoptosis, mitochondrial membrane potential, key enzymes of glycolysis, ATP concentration of glycolysis were assessed after the intervention. Apoptosis related protein(Bcl-2, Bax), HIF-1a protein, and PDK-1 protein were assessed by western blot. Results Compared with the H/R group, SPC significantly increased the expression of HIF-1a, PDK-1, and Bcl-2 and reduced the protein expression of Bax, which markedly decreased the apoptosis ratio and Lactate dehydrogenase (LDH) level, increasing the cell viability, content of key enzymes of glycolysis, ATP concentration of glycolysis and stabilizing the mitochondrial membrane potential. However, the cardioprotective effects of SPC were disappeared by treatment with a HIF-1a selective inhibitor. Conclusion This study demonstrates that the cardioprotective effects of SPC are associated with the activation of the HIF-1a/PDK-1 signaling pathway. The mechanism may be related to increasing the content of key enzymes and ATP of glycolysis in the early stage of hypoxia.

2003 ◽  
Vol 98 (5) ◽  
pp. 1178-1185 ◽  
Author(s):  
Ruei-Ming Chen ◽  
Chih-Hsiung Wu ◽  
Huai-Chia Chang ◽  
Gong-Jhe Wu ◽  
Yi-Ling Lin ◽  
...  

Background Propofol is an intravenous anesthetic agent that may impair host defense system. The aim of this study was to evaluate the effects of propofol on macrophage functions and its possible mechanism. Methods Mouse macrophage-like Raw 264.7 cells were exposed to propofol, at 3, 30 (a clinically relevant concentration), and 300 microm. Cell viability, lactate dehydrogenase, and cell cycle were analyzed to determine the cellular toxicity of propofol to macrophages. After administration of propofol, chemotactic, phagocytic, and oxidative ability and interferon-gamma mRNA production were carried out to validate the potential effects of propofol on macrophage functions. Mitochondrial membrane potential and cellular adenosine triphosphate levels were also analyzed to evaluate the role of mitochondria in propofol-induced macrophage dysfunction. Results Exposure of macrophages to 3 and 30 microm propofol did not affect cell viability. When the administered concentration reached 300 microm, propofol would increase lactate dehydrogenase release, cause arrest of cell cycle in G1/S phase, and lead to cell death. In the 1-h-treated macrophages, propofol significantly reduced macrophage functions of chemotactic and oxidative ability in a concentration-dependent manner. However, the suppressive effects were partially or completely reversed after 6 and 24 h. Propofol could reduce phagocytic activities of macrophages in concentration- and time-dependent manners. Exposure of macrophages to lipopolysaccharide induced the mRNA of interferon-gamma, but the induction was significantly blocked by propofol. Propofol concentration-dependently decreased the membrane potential of macrophage mitochondria, but the effects were descended with time. The levels of cellular adenosine triphosphate in macrophages were also reduced by propofol. Conclusions A clinically relevant concentration of propofol can suppress macrophage functions, possibly through inhibiting their mitochondrial membrane potential and adenosine triphosphate synthesis instead of direct cellular toxicity.


2020 ◽  
Author(s):  
Kanokwan Demeekul ◽  
Wichit Suthammarak ◽  
Soontaree Petchdee

Abstract Background Ischemia/reperfusion (I/R) injury is the major mechanism during Ischemic Heart Disease (IHD). The key modulator of I/R injury is dysregulation of mitochondria function. Germinated Brown Rice (GBR) has recommended as a bio-functional food and has clarified the potential properties in several effects. However, the effect of GBR mediated cardioprotective properties, focusing on the role of mitochondrial function, remains unexplored. Thus, this study aims to investigate the cardioprotective effects of GBR pretreatment against simulated I/R injury. Results H9c2 cardiomyocytes were incubated with GBR at a concentration of 5 ƞg/ml for 24 hours and/or simulated I/R (sI/R) for 40 minutes. Cell viability and cell apoptosis were assessed by 7-AAD staining and AnnexinV/PI staining, respectively. For evaluation of mitochondrial functions, not only mitochondrial membrane potential was determined by JC-1 staining but also mitochondrial respiration was represented by oxygen consumption rate (OCR) using Seahorse Flux analyzer. The results revealed that administration of GBR prior to sI/R significantly decreased the percentage of cell death and total cell apoptosis in H9c2 during stimulation of ischemic/reperfusion. In addition, pretreatment of cardiomyocytes with GBR remarkably stabilized mitochondrial membrane potential and improved impaired mitochondrial respiration in simulated-H9c2 injury. Conclusion the present research is the first study to report the effective cardioprotection of GBR. Pretreatment of GBR potentially protects H9c2 cardiomyocytes against sI/R injury through mitochondrial function. The underlying therapeutic activities are possibly associated with its bio-functional compounds. However, the underlying mechanism on cardioprotective effects of GBR needs further studies.


2019 ◽  
Vol 18 (4) ◽  
pp. 334-341 ◽  
Author(s):  
Kun Fu ◽  
Liqiang Chen ◽  
Lifeng Miao ◽  
Yan Guo ◽  
Wei Zhang ◽  
...  

Background/Objective: Grape seed proanthocyanidins (GSPs) are a group of polyphenolic bioflavonoids, which possess a variety of biological functions and pharmacological properties. We studied the neuroprotective effects of GSP against oxygen-glucose deprivation/reoxygenation (OGD/R) injury and the potential mechanisms in mouse neuroblastoma N2a cells. Methods: OGD/R was conducted in N2a cells. Cell viability was evaluated by CCK-8 and LDH release assay. Apoptosis was assessed by TUNEL staining and flow cytometry. Protein levels of cleaved caspase-3, Bax and Bcl-2 were detected by Western blotting. CHOP, GRP78 and caspase-12 mRNA levels were assessed by real-time PCR. JC-1 dying was used to detect mitochondrial membrane potential. ROS levels, activities of endogenous antioxidant enzymes and ATP production were examined to evaluate mitochondrial function. Results: GSP increased cell viability after OGD/R injury in a dose-dependent manner. Furthermore, GSP inhibited cell apoptosis, reduced the mRNA levels of CHOP, GRP78 and caspase-12 (ER stressassociated genes), restored mitochondrial membrane potential and ATP generation, improved activities of endogenous anti-oxidant ability (T-AOC, GXH-Px, and SOD), and decreased ROS level. Conclusion: Our findings suggest that GSP can protect N2a cells from OGD/R insult. The mechanism of anti-apoptotic effects of GSP may involve attenuating ER stress and mitochondrial dysfunction.


2019 ◽  
Vol 317 (6) ◽  
pp. G862-G871
Author(s):  
Amrita Ahluwalia ◽  
Neil Hoa ◽  
Michael K. Jones ◽  
Andrzej S. Tarnawski

Nonsteroidal anti-inflammatory drugs (NSAIDs) such as diclofenac (DFN) and indomethacin (INDO) are extensively used worldwide. Their main side effects are injury of the gastrointestinal tract, including erosions, ulcers, and bleeding. Since gastric epithelial cells (GEPCs) are crucial for mucosal defense and are the major target of injury, we examined the extent to which DFN- and INDO-induced GEPC injury can be reversed by nerve growth factor (NGF), 16,16 dimethyl prostaglandin E2 (dmPGE2), and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), the pharmacological activator of the metabolic sensor AMP kinase (AMPK). Cultured normal rat gastric mucosal epithelial (RGM1) cells were treated with PBS (control), NGF, dmPGE2, AICAR, and/or NSAID (DFN or INDO) for 1–4 h. We examined cell injury by confocal microscopy, cell death/survival using calcein AM, mitochondrial membrane potential using MitoTracker, and phosphorylation of AMPK by Western blotting. DFN and INDO treatment of RGM1 cells for 2 h decreased mitochondrial membrane potential and cell viability. NGF posttreatment (initiated 1 or 2 h after DFN or INDO) reversed the dissipation of mitochondrial membrane potential and cell injury caused by DFN and INDO and increased cell viability versus cells treated for 4 h with NSAID alone. Pretreatment with dmPGE2 and AICAR significantly protected these cells from DFN- and INDO-induced injury, whereas dmPGE2 and AICAR posttreatment (initiated 1 h after NSAID treatment) reversed cell injury and significantly increased cell viability and rescued the cells from NSAID-induced mitochondrial membrane potential reduction. DFN and INDO induce extensive mitochondrial injury and GEPC death, which can be significantly reversed by NGF, dmPGE2, and AICAR. NEW & NOTEWORTHY This study demonstrated that mitochondria are key targets of diclofenac- and indomethacin-induced injury of gastric epithelial cells and that diclofenac and indomethacin injury can be prevented and, importantly, also reversed by treatment with nerve growth factor, 16,16 dimethyl prostaglandin E2, and 5-aminoimidazole-4-carboxamide ribonucleotide.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4582-4582 ◽  
Author(s):  
Wendy J. Freebern ◽  
Hengsheng S. Fang ◽  
Martin D. Slade ◽  
Susan Wells ◽  
Jennifer Canale ◽  
...  

Abstract Tyrosine kinase inhibitors (TKI) selective for Bcr-Abl, such as dasatinib, imatinib, and nilotinib have had remarkable success in the clinic, potentially shifting the prognosis of chronic myelogenous leukemia (CML) to a manageable chronic disease. With the increase in longevity of CML patients, there is rising concern of co-morbidities that may be influenced by chemotherapy (Force et al., Nature Rev.2007;7:332–340). Recently, congestive heart failure (CHF) and direct cellular cardiotoxicity have been reported in CML patients on imatinib therapy (Kerkela et al., Nature Medicine2006;12:908–916). Ultrastructural mitochondrial abnormalities in cardiomyocytes were observed in CML patients with severe CHF and, interestingly, similar abnormalities were observed in cardiomyocytes of imatinib-treated mice, thus providing a prospective in vivo animal model for imatinib-induced cardiotoxicity. Furthermore, correlative findings of mitochondrial membrane potential loss, decreased cell viability, and increased apoptosis resulted from an array of cell-based assays in imatinib-treated primary rat cardiomyocytes, consequentially affording a supportive, if not predictive, in vitro cardiomyocyte toxicity model. Since imatinib-induced inhibition of the native form of c-Abl kinase was speculated to cause the observed cardiotoxicity and c-Abl is a shared target of dasatinib, imatinib, and nilotinib, the in vitro cardiotoxicity potential of dasatinib and nilotinib at pharmacologically relevant concentrations (0.09 μM and 5 μM, respectively) and up to 10-fold higher concentrations were compared side-by-side with imatinib in primary rat cardiomyocytes. Dasatinib did not significantly affect mitochondrial membrane potential, cell viability, apoptosis, or cellular ultrastructure in vitro, whereas imatinib significantly affected these parameters. Nilotinib at pharmacologically relevant concentration demonstrated decreased cell viability, but differed from imatinib in that mitochondrial membrane potential integrity was not affected under identical experimental conditions. Results suggest that at pharmacologically relevant concentrations, dasatinib does not induce cardiotoxicity, as does imatinib and nilotinib, and the molecular mechanisms of the observed cardiotoxicities may differ between imatinib and nilotinib. Of indirect relation, results from assessing another cardiovascular liability, namely hERG K+ channel blockade, demonstrated that dasatinib, imatinib and nilotinib differentially inhibited the hERG currents in vitro with IC50 of 14.3, 15.6 and 0.66 μM, respectively. These in vitro findings occurred at concentration levels approximately 150, 3 and 0.1-fold the expected human Cmax for the three TKIs, respectively. Thus, although TKI therapies may share similar targeting and clinical indications, differentiating specific toxicity profiles may be predictive of differences in potential clinical adversities.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5558-5558
Author(s):  
Jishi Wang ◽  
Wei Sixi ◽  
Wang Yating ◽  
Chai Qixiang

Abstract Aim Using lentivirus-mediated HO-1 siRNA (lenti-siHO-1-GFP) to silence the HO-1 gene in Kasumi cells so as to explore the role and mechanism of HO-1 on cell apoptosis. Methods To infect Kasumi cells with lenti-siHO-1-GFP and check the infection efficiency by using fluorescence microscopy and flow cytometry (FCM). Experimental group was divided into three groups: untreated Kasumi (K), infected Kasumi by empty vector (lenti-GFP-K) and infected Kasumi by lentivirus-mediated HO-1 siRNA (lenti-siHO-1-K). The HO-1 expression of each group was detected by realtime PCR. Fluo3-AM method was used to detect the intracellular Ca2+ accumulation. DCFH-DA was used for the measurement of intracellular ROS. The change of mitochondrial membrane potential was evaluated by JC-1 stainning by using FCM. After being treated with various concentrations of daunorubicin for 24, 48, and 72 h respectively, cell viability was determined by MTT assay. Cell apoptosis was determined by FCM following with cells dual-stained with Annexin-V-FITC and propidium iodide (PI). The mRNA of HO-1 and apoptosis-related genes were analyzed by realtime PCR and, the expressions of their corresponding protein were determined by western blot. Additionally, After treating with 10mM Ca2+chelator BAPTA-AM and 0.5mM NAC for 12h, Ca2+ accumulation, ROS generation, the expression of HO-1 and apoptosis-related genes were detected respectively. Result presented in mean±sd manner. Results After lenti-siHO-1-GFP infection for 48h, we could observe the fluorescence clear, the fluorescent intensity was 95.87% after 72 hours. The HO-1 silencing efficiency of lenti-siHO-1-K was 77.00%. MTT result showed that daunorubicin exerted moderate inhibitory effects on cell proliferation in a dose and time dependent manner. With the same treating conditions, the cell viability of lenti-siHO-1-K group was significantly lower than the other two groups(e.g 49.20±1.30% survival in lenti-siHO-1-K group, 72.40±1.90% in K group and 74.10±2.10% in lenti-GFP-K group after being treated by 5ug/ml DNR,respectively, p=0.014), while the apoptosis rate was higher than the other two groups(e.g 75.77±3.41% in lenti-siHO-1-K group, 23.72±2.03% in K group and 26.10±1.95% in lenti-GFP-K group after being treated by 5ug/ml DNR,respectively, p=0.011). Compared with other two groups, the lenti-siHO-1-K group showed a downregulation in the mRNA and protein expression of HO-1. The mRNA and protein expressions of cyto-C, caspase3, caspase8, caspase9 and caspase12 in lenti-siHO-1-K group were upregulated after exposure to 5ug/ml daunorubicin for 24 hours. Compared with K and lenti-GFP-K groups, Ca2+ accumulation in lenti-siHO-1-K group was increased significantly(e.g 40.35±2.10% in lenti-siHO-1-K group, 17.30±1.81% in K group and 14.15±1.75% in lenti-GFP-K group,respectively, p=0.041). The ROS generation was higher than the other two groups(e.g 47.65±2.05% in lenti-siHO-1-K group, 21.30±1.94% in K group and19.90±2.01% in lenti-GFP-K group,respectively, p=0.037). The ratio of Green/Red fluorescence intensity increased significantly in lenti-siHO-1-K group(e.g 0.704±0.06 in lenti-siHO-1-K group, 0.57±0.09 in K group and 0.527±0.05 in lenti-GFP-K group, respectively, p=0.042). After exposure to 10mM BAPTA-AM and 0.1mM NAC alone or combined with, both the intracellular Ca2+accumulation and the ROS level in lenti-siHO-1-K group reduced(17.59±1.01% of Ca2+acumulation and 19.78±1.3% of ROS production after BAPTA-AM treatment alone, 23.42±1.97% of Ca2+and 15.47±1.14% of ROS after being treated by NAC alone, 16.52±1.23% of Ca2+and 14.37±1.21% of ROS after treatment by both agent) , while the mRNA and protein expressions of cyto-C, caspase3, caspase8, caspase9 and caspase12, decreased significantly. Conclusion HO-1 gene silencing played a role in pro-apoptosis in Kasumi cells. The mechanism may be related to the endoplasmic reticulum stress and abnormal accumulation of intracellular Ca2+, ROS generation, descending of the mitochondrial membrane potential and release cyto-C, then further activated the caspases cascade and promoted apoptosis. However, it tended to be initiated by crosstalk in Ca2+-ROS pathway. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Vu Thi Thu ◽  
Ngo Thi Hai Yen

This study was conducted to evaluate the protective effect of Naringin (NAR) on H9C2 cardiomyocytes in hypoxia/reoxygenation (HR) injury in vitro induced by the hypoxia chamber. Methods: H9C2 cells were grown under normal (control) and HR conditions. The viability, cardiolipin content and mitochondrial membrane potential of H9C2 cells in experimental groups were analyzed by using suitable kits. Results: The obtained results showed that the addition of Naringin (16÷160 µM) significantly increased the survival rate of H9C2 cells under HR conditions. In particular, NAR had the highest efficiency in preserving mitochondrial function at concentrations of 80 µM and 160 µM. In HR-exposed H9C2 cell group, the cardiolipin content and mitochondrial membrane potential values of H9C2 cells were decreased sharply with that of control (71,64±1,37% and 68,12±2,78%, p<0,05). Interestingly, mitochondrial cardiolipin contents were signigicantly increased in H9C2 cells post-hypoxic treated wtih NAR at dose of 80 µM 160 µM to 87,76±1,89% and 81,09±1,21%. Additionally, post-hypoxic supplementation of NAR at concentration of 80 µM and 160 µM effectively increased mitochondrial membrane potential values. Conclusion: The obtained results are preliminary data on the effects of NAR in protecting mitochondrial-targeted cardiomyocytes against HR injury.


Sign in / Sign up

Export Citation Format

Share Document