scholarly journals Host migration and environmental temperature influence avian haemosporidians prevalence: a molecular survey in a Brazilian Atlantic rainforest

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11555
Author(s):  
Raquel A. Rodrigues ◽  
Gabriel M.F. Felix ◽  
Mauro Pichorim ◽  
Patricia A. Moreira ◽  
Erika M. Braga

Avian haemosporidians are parasites with great capacity to spread to new environments and new hosts, being considered a good model to host-parasite interactions studies. Here, we examine avian haemosporidian parasites in a protected area covered by Restinga vegetation in northeastern Brazil, to test the hypothesis that haemosporidian prevalence is related to individual-level traits (age and breeding season), species-specific traits (diet, foraging strata, period of activity, species body weight, migratory status, and nest shape), and climate factors (temperature and rainfall). We screened DNA from 1,466 birds of 70 species captured monthly from April 2013 to March 2015. We detected an overall prevalence (Plasmodium/Haemoproteus infection) of 22% (44 host species) and parasite’s lineages were identified by mitochondrial cyt b gene. Our results showed that migration can be an important factor predicting the prevalence of Haemoproteus (Parahaemoproteus), but not Plasmodium, in hosts. Besides, the temperature, but not rainfall, seems to predict the prevalence of Plasmodium in this bird community. Neither individual-level traits analyzed nor the other species-specific traits tested were related to the probability of a bird becoming infected by haemosporidians. Our results point the importance of conducting local studies in particular environments to understand the degree of generality of factors impacting parasite prevalence in bird communities. Despite our attempts to find patterns of infection in this bird community, we should be aware that an avian haemosporidian community organization is highly complex and this complexity can be attributed to an intricate net of factors, some of which were not observed in this study and should be evaluated in future studies. We evidence the importance of looking to host-parasite relationships in a more close scale, to assure that some effects may not be obfuscated by differences in host life-history.

2018 ◽  
Author(s):  
L. Garcia-Longoria ◽  
A. Marzal ◽  
F. de Lope ◽  
L. Z. Garamszegi

ABSTRACTParasites are a selective force that shape host community structure and dynamics, but host communities can also influence parasitism. Understanding the dual nature from host-parasite interactions can be facilitated by quantifying the variation in parasite prevalence (i.e. the proportion of infected host individuals in a population) among host species and then comparing that variation to other ecological factors that are known to also shape host communities. Avian haemosporidian parasites (e.g. Plasmodium and Haemoproteus) are abundant and widespread representing an excellent model for the study of host-parasite interactions. Several geographic and environmental factors have been suggested to determine prevalence of avian haemosporidians in bird communities. However, much remains to be known regarding whether host and parasite traits, represented by phylogenetic distances among species and degree of specialization in host-parasite relationships, can influence parasite prevalence. The aims of this study were to analyze factors affecting prevalence in a bird community and to test whether the degree of parasite specialization on their hosts is determined by host traits. Our statistical analyses suggest that prevalence is mainly determined by the interaction between host species and parasite lineages where tolerance and/or susceptibility to parasites plays an essential role. Additionally, we found that although some of the parasite lineages infected a low number of bird species, the species they infected were distantly related and therefore the parasites themselves should not be considered typical host specialists. Prevalence was higher for generalist than for specialist parasites in some, but not all, host species. These results suggest that prevalence mainly results from the interaction between host immune defences and parasite exploitation strategies wherein the result of an association between particular parasite lineages and particular host species is idiosyncratic.


2015 ◽  
Vol 11 (5) ◽  
pp. 20150131 ◽  
Author(s):  
Rony Izhar ◽  
Jarkko Routtu ◽  
Frida Ben-Ami

In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa , we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters.


2021 ◽  
Author(s):  
Luz Garcia-Longoria ◽  
Jaime Muriel ◽  
Sergio Magallanes ◽  
Zaira Hellen Villa-Galarce ◽  
Leonila Ricopa ◽  
...  

Abstract Characterizing the diversity and structure of host-parasite communities is crucial to understanding their eco-evolutionary dynamics. Malaria and related haemosporidian parasites are responsible for fitness loss and mortality in bird species worldwide. However, despite exhibiting the greatest ornithological biodiversity, avian haemosporidians from Neotropical regions are quite unexplored. Here, we analyse the genetic diversity of bird haemosporidian parasites (Plasmodium and Haemoproteus) in 1,336 individuals belonging to 206 bird species to explore for differences in diversity of parasite lineages and bird species across five well-differentiated Peruvian ecoregions. We detected 70 different haemosporidian lineages infecting 74 bird species. We showed that 25 out of the 70 haplotypes had not been previously recorded. Moreover, we also identified 81 new host – parasite interactions representing new host records for these haemosporidian parasites. Our outcomes revealed that the effective diversity (as well as the richness, abundance, and Shannon-Weaver index) for both birds and parasite lineages was higher in Amazon basin ecoregions. Furthermore, we also showed that ecoregions with greater diversity of bird species also had high parasite richness, hence suggesting that host community is crucial in explaining parasite richness. Generalist parasites were found in ecoregions with lower bird diversity, implying that the abundance and richness of hosts may shape the exploitation strategy followed by haemosporidian parasites. These outcomes reveal that Neotropical region is a major reservoir of unidentified haemosporidian lineages. Further studies analysing host distribution and specificity of these parasites in the tropics will provide important knowledge about phylogenetic relationships, phylogeography, and patterns of evolution and distribution of haemosporidian parasites.


2014 ◽  
Vol 86 (3) ◽  
pp. 1207-1220 ◽  
Author(s):  
GUILHERME S. TOLEDO-LIMA ◽  
PHOEVE MACARIO ◽  
RACHEL M. DE LYRA-NEVES ◽  
BRUNO P. TEIXEIRA ◽  
LUIZ A.F. DE LIMA ◽  
...  

In northeastern Brazil, the reduction of the natural forest cover to a series of small, isolated fragments has had negative consequences for the local avian fauna, in particular, a loss of the more specialized species, while the populations of some generalists have tended to increase. The present study focuses on the composition and trophic groups of a bird community on a farm in the northeastern Brazilian state of Alagoas. Monthly surveys were conducted between November 2008 and October 2009, based on mist-netting and systematic observations. Overall, 112 species were recorded, of which 76 were associated with the two forest fragments surveyed, while all the others were observed exclusively in the surrounding matrix of pasture and orchards. The bird community presented a predominance of insectivorous species, followed by omnivores. However, specialized trunk-creeping and understory insectivores accounted for only around 15% of the species in this feeding category. The reduced diversity of other guilds and species with more specialized diets, and the complete absence of sensitive species such as large parrots and raptors, reflects the severe fragmentation and degradation of the local forests, which has greatly reduced the availability of dietary resources and breeding sites.


2021 ◽  
pp. 1-13
Author(s):  
Heitor Felippe Uller ◽  
Laio Zimermann Oliveira ◽  
Aline Renata Klitzke ◽  
Joberto Veloso de Freitas ◽  
Alexander Christian Vibrans

Allometric models embedding independent variables such as diameter at breast height (d) and total height (h) are useful tools to predict the biomass of individual trees. Models for tropical forests are often constructed based on datasets composed of species with different morphological features and architectural models. It is reasonable to expect, however, that species-specific models may reduce uncertainties in biomass predictions, especially for palms, tree ferns, and trees with peculiar morphological features, such as stilt roots and hollow trunks. In this sense, three species with wide geographical distribution in the Brazilian Atlantic Forest were sampled, namely Euterpe edulis Mart., Cyathea delgadii Sternb., and Cecropia glaziovii Snethl., with the aim to (i) quantify their aboveground biomass (AGB), (ii) evaluate the AGB distribution in different plant compartments, (iii) fit species-specific models for predicting AGB at the individual level, and (iv) assess the performance of specific and generic models available in the literature to predict the AGB of individuals of these species. The compartment stem represented, on average, ∼74% of the total AGB of E. edulis individuals; in turn, the caudex compartment of C. delgadii represented, on average, ∼87% of the total AGB, while the trunk compartment of C. glaziovii represented, on average, ∼74%. Among the fitted models, the power model [Formula: see text] showed the best performance for E. edulis and C. delgadii. In turn, the asymptotic logistic model [Formula: see text], where dc is the diameter above the upper stilt root, presented the best performance for C. glaziovii. The variable h appeared as the most important predictor of AGB of E. edulis and C. delgadii; in contrast, the stem and caudex mean basic specific gravities were not suitable predictors. The fitted species-specific models outperformed the specific and generic models selected from the literature. They may, therefore, contribute to the reduction of uncertainties in AGB estimates. In addition, the results support evidence that specific models may be necessary for species with different growth forms and (or) peculiar morphological features, especially those with great abundance and wide geographic distribution.


2010 ◽  
Vol 7 (1) ◽  
pp. 108-111 ◽  
Author(s):  
Corine N. Schoebel ◽  
Christoph Tellenbach ◽  
Piet Spaak ◽  
Justyna Wolinska

Both host susceptibility and parasite infectivity commonly have a genetic basis, and can therefore be shaped by coevolution. However, these traits are often sensitive to environmental variation, resulting in genotype-by-environment interactions. We tested the influence of temperature on host–parasite genetic specificity in the Daphnia longispina hybrid complex, exposed to the protozoan parasite Caullerya mesnili . Infection rates were higher at low temperature. Furthermore, significant differences between host clones, but not between host taxa, and a host genotype-by-temperature interaction were observed.


Parasitology ◽  
1998 ◽  
Vol 116 (S1) ◽  
pp. S47-S55 ◽  
Author(s):  
J. C. Koella ◽  
P. Agnew ◽  
Y. Michalakis

SummarySeveral recent studies have discussed the interaction of host life-history traits and parasite life cycles. It has been observed that the life-history of a host often changes after infection by a parasite. In some cases, changes of host life-history traits reduce the costs of parasitism and can be interpreted as a form of resistance against the parasite. In other cases, changes of host life-history traits increase the parasite's transmission and can be interpreted as manipulation by the parasite. Alternatively, changes of host's life-history traits can also induce responses in the parasite's life cycle traits. After a brief review of recent studies, we treat in more detail the interaction between the microsporidian parasite Edhazardia aedis and its host, the mosquito Aedes aegypti. We consider the interactions between the host's life-history and parasite's life cycle that help shape the evolutionary ecology of their relationship. In particular, these interactions determine whether the parasite is benign and transmits vertically or is virulent and transmits horizontally.Key words: host-parasite interaction, life-history, life cycle, coevolution.


Parasitology ◽  
1985 ◽  
Vol 90 (1) ◽  
pp. 205-216 ◽  
Author(s):  
D. J. Minchella

Over half of all living species of plants and animals are parasitic, which by definition involves intimate association with and unfavourable impact on hosts (Price, 1980). This paper will only consider parasites whose ‘unfavourable impact’ adversely affects the birth and/or mortality rates of their hosts (Anderson, 1978). Most organisms are potential hosts and must deal with the problem of parasitism. The probability of parasitic infection of a host is influenced by both environmental and genetic factors. Traditionally it was assumed that a host was either resistant or susceptible to a particular parasite and therefore the interaction between a parasite and potential host had only two possible outcomes: either the resistant host rebuffed the parasitic attack and remained uninfected or the parasite successfully invaded and significantly reduced the reproductive success of the susceptible host. This approach, however, ignored the intraspecific genetic variation present within both host and parasite populations (Wakelin, 1978). Since the outcome is determined by the interaction of a finite set of host genes and parasite genes, genetic variation in host susceptibility and parasite infectivity (Richards, 1976; Wakelin, 1978) suggests that more than two outcomes are possible. Variation in host and parasite genomes does not begin and end at the susceptibility/infectivity loci. Other genes may also influence the outcome of host–parasite interactions by altering the life-history patterns of hosts and parasites, and lead to a variety of outcomes.


Parasitology ◽  
2012 ◽  
Vol 139 (10) ◽  
pp. 1346-1360 ◽  
Author(s):  
KIRILL V. GALAKTIONOV ◽  
ISABEL BLASCO-COSTA ◽  
PETER D. OLSON

SUMMARYThe ‘pygmaeus’ microphallids (MPG) are a closely related group of 6 digenean (Platyhelminthes: Trematoda) Microphallus species that share a derived 2-host life cycle in which metacercariae develop inside daughter sporocysts in the intermediate host (intertidal and subtidal gastropods, mostly of the genus Littorina) and are infective to marine birds (ducks, gulls and waders). Here we investigate MPG transmission patterns in coastal ecosystems and their diversification with respect to historical events, host switching and host-parasite co-evolution. Species phylogenies and phylogeographical reconstructions are estimated on the basis of 28S, ITS1 and ITS2 rDNA data and we use a combination of analyses to test the robustness and stability of the results, and the likelihood of alternative biogeographical scenarios. Results demonstrate that speciation within the MPG was not associated with co-speciation with either the first intermediate or final hosts, but rather by host-switching events coincident with glacial cycles in the Northern Hemisphere during the late Pliocene/Pleistocene. These resulted in the expansion of Pacific biota into the Arctic-North Atlantic and periodic isolation of Atlantic and Pacific populations. Thus we hypothesize that contemporary species of MPG and their host associations resulted from fragmentation of populations in regional refugia during stadials, and their subsequent range expansion from refugial centres during interstadials.


Parasitology ◽  
2015 ◽  
Vol 142 (13) ◽  
pp. 1579-1587 ◽  
Author(s):  
J. PEGG ◽  
D. ANDREOU ◽  
C. F. WILLIAMS ◽  
J. R. BRITTON

SUMMARYIn host–parasite relationships, parasite prevalence and abundance can vary over time, potentially impacting how hosts are affected by infection. Here, the pathology, growth, condition and diet of a juvenile Cyprinus carpio cohort infected with the non-native cestode Bothriocephalus acheilognathi was measured in October 2012 (end of their first summer of life), April 2013 (end of first winter) and October 2013 (end of second summer). Pathology revealed consistent impacts, including severe compression and architectural modification of the intestine. At the end of the first summer, there was no difference in lengths and condition of the infected and uninfected fish. However, at the end of the winter period, the condition of infected fish was significantly reduced and by the end of their second summer, the infected fish were significantly smaller and remained in significantly reduced condition. Their diets were significantly different over time; infected fish consumed significantly higher proportions of food items <53 µm than uninfected individuals, a likely consequence of impaired functional traits due to infection. Thus, the sub-lethal impacts of this parasite, namely changes in histopathology, growth and trophic niche were dependent on time and/or age of the fish.


Sign in / Sign up

Export Citation Format

Share Document