scholarly journals Co-occurrence pattern of congeneric tree species provides conflicting evidence for competition relatedness hypothesis

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12150
Author(s):  
Shuntaro Watanabe ◽  
Yuri Maesako

In plants, negative reproductive interaction among closely related species (i.e., reproductive interference) is known to hamper the coexistence of congeneric species while facilitation can increase species persistence. Since reproductive interference in plants may occur through interspecific pollination, the effective range of reproductive interference may reflects the spatial range of interspecific pollination. Therefore, we hypothesized that the coexistence of congeners on a small spatial scale would be less likely to occur by chance but that such coexistence would be likely to occur on a scale larger than interspecific pollination frequently occur. In the present study, we tested this hypothesis using spatially explicit woody plant survey data. Contrary to our prediction, congeneric tree species often coexisted at the finest spatial scale and significant exclusive distribution was not detected. Our results suggest that cooccurrence of congeneric tree species is not structured by reproductive interference, and they indicate the need for further research to explore the factors that mitigate the effects of reproductive interference.

2021 ◽  
Author(s):  
Shuntaro Watanabe ◽  
Yuri Maesako

AbstractUnderstanding how biotic interaction affects species composition and distribution is a major challenge in community ecology. In plants, negative reproductive interaction among closely related species (i.e., reproductive interference) is known to hamper the coexistence of congenic species. Since the magnitude of reproductive interference in plants depends on pollen flow distance, we hypothesized that the coexistence of congeners on a small spatial scale would be less likely to occur by chance but that such coexistence would be likely to occur on a scale larger than pollen flow distance. In the present study, we tested this hypothesis using spatially explicit woody plant survey data. Contrary to our prediction, congenic tree species often coexisted at the finest spatial scale and significant exclusive distribution was not detected. Our results suggest that cooccurrence of congenic tree species is not structured by reproductive interference, and they indicate the need for further research to explore the factors that mitigate the effects of reproductive interference.


2016 ◽  
Vol 19 (2) ◽  
pp. 983-998 ◽  
Author(s):  
Marcin K. Dyderski ◽  
Andrzej M. Jagodziński

2020 ◽  
Vol 47 (2) ◽  
pp. 109-120
Author(s):  
Ján Supuka ◽  
Attila Tóth ◽  
Mária Bihuňová ◽  
Martina Verešová ◽  
Karol Šinka

AbstractThe woody plant species composition has been evaluated in three cadastral territories of southwestern Slovakia, together in 77 habitats of non-forest woody vegetation (NFWV). A total of 43 tree species have been identified; 8 of them were alien and 5 species were cultural fruit trees. In total 20 shrub species were identified, out of which 3 were alien. Three woody species are classified as invasive according to the law in Slovakia: Acer negundo L., Ailanthus altissima (Mill.) Swingle, and Lycium barbarum L. They occurred only in 2, maximum in 4 of the evaluated habitats. The most occurring alien tree species Robinia pseudoacacia L. was generally identified in 58 habitats and in 48 habitats, with an incidence over 40% and dominance index of 70.6. The second most occurring alien tree Populus × canadensis had a dominance index of 8.3. The dominant native trees in NFWV were Acer campestre L., Fraxinus excelsior L., Quercus robur L., Salix fragilis L. with the dominance index of 1–5 only.


Author(s):  
Zhuang Wang ◽  
Lijuan Zhao ◽  
Jiaqi Liu ◽  
Yajie Yang ◽  
Juan Shi ◽  
...  

To study the effect of the invasion of Bursaphelenchus xylophilus on the functional relationship between woody plants and insect communities, the populations of tree species and insect communities were investigative in the Masson pine forests with different infestation durations of B. xylophilus. In this study, the number of Pinus massoniana began to decrease sharply, whereas the total number of other tree species in the arboreal layer increased gradually with the infestation duration of B. xylophilus. The principal component analysis ordination biplot shows that there was a significant change in the spatial distribution of woody plant species in different Masson pine forest stands. Additionally, a total of 7,188 insect specimens was obtained. The insect population showed an upward trend in stand types with the increase of pine wilt disease infection periods, which demonstrated that the insect community had been significantly affected by the invasion of B. xylophilus. The structure of insect functional groups changed from herbivorous (He) > omnivorous (Om) > predatory (Pr) > parasitic (Pa) > detritivorous (De) in the control stand to He > Pa > Om, De > Pr after B. xylophilus infestation in the forests. The results showed that the populations of He, Pa, and De increased after the invasion of B. xylophilus, but the populations of Pr decreased. Moreover, the redundancy analysis ordination bi-plots reflected the complicated functional relationship between woody plant communities and insects after the invasion of B. xylophilus. The present study provides insights into the changes in the community structure of woody plants and insects, as well as the functional relationship between woody plant communities and insect communities after invasion of B. xylophilus.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 92 ◽  
Author(s):  
Ruchika ◽  
Zsolt Csintalan ◽  
Evelin Ramóna Péli

Bryophytes face challenges due to global climate change which is leading to in-depth research in monitoring and studying their photosynthetic activity. The aim of this preliminary experiment was to study the seasonal variation trend in the chlorophyll a fluorescence parameters, Fv/Fm (ratio of variable to maximum fluorescence), photochemical fluorescence quenching (qP), photochemical quantum yield of photosystem II (ΦPS II), fluorescence quenching (qN), and non-photochemical quenching (NPQ), in the moss cushions of Syntrichia ruralis [Hedw.] collected from semi-arid sandy dunes for two slopes i.e., north-east (NE) and south-west (SW) direction. Our results showed a seasonal and small-spatial scale variation trend in all chlorophyll fluorescence parameters. These variations are due to different seasonal conditions referring to different degrees of environmental stress. ΦPS II and qP values were maximum in winter and in spring seasons while Fv/Fm, NPQ and qN were maximum in summer. Based on the different exposition of dunes, the SW slope showed increased values of the effective quantum yield of PS II and qP in comparison to the NE slope due to the optimal microclimate conditions for their expansion. These results may refer to the future changing in diversification and coverage of the Syntrichia species in semi-arid sandy grassland due to more effective metabolism in the beneficial microclimatic conditions.


Nature ◽  
2005 ◽  
Vol 433 (7021) ◽  
pp. 65-68 ◽  
Author(s):  
Erik Postma ◽  
Arie J. van Noordwijk

Oikos ◽  
2015 ◽  
Vol 124 (11) ◽  
pp. 1511-1519 ◽  
Author(s):  
James E. Byers ◽  
Anna J. Malek ◽  
Lauren E. Quevillon ◽  
Irit Altman ◽  
Carolyn L. Keogh

Sign in / Sign up

Export Citation Format

Share Document