scholarly journals Frequent coexistence of closely related tree species on a small scale in temperate evergreen forests in Japan

2021 ◽  
Author(s):  
Shuntaro Watanabe ◽  
Yuri Maesako

AbstractUnderstanding how biotic interaction affects species composition and distribution is a major challenge in community ecology. In plants, negative reproductive interaction among closely related species (i.e., reproductive interference) is known to hamper the coexistence of congenic species. Since the magnitude of reproductive interference in plants depends on pollen flow distance, we hypothesized that the coexistence of congeners on a small spatial scale would be less likely to occur by chance but that such coexistence would be likely to occur on a scale larger than pollen flow distance. In the present study, we tested this hypothesis using spatially explicit woody plant survey data. Contrary to our prediction, congenic tree species often coexisted at the finest spatial scale and significant exclusive distribution was not detected. Our results suggest that cooccurrence of congenic tree species is not structured by reproductive interference, and they indicate the need for further research to explore the factors that mitigate the effects of reproductive interference.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12150
Author(s):  
Shuntaro Watanabe ◽  
Yuri Maesako

In plants, negative reproductive interaction among closely related species (i.e., reproductive interference) is known to hamper the coexistence of congeneric species while facilitation can increase species persistence. Since reproductive interference in plants may occur through interspecific pollination, the effective range of reproductive interference may reflects the spatial range of interspecific pollination. Therefore, we hypothesized that the coexistence of congeners on a small spatial scale would be less likely to occur by chance but that such coexistence would be likely to occur on a scale larger than interspecific pollination frequently occur. In the present study, we tested this hypothesis using spatially explicit woody plant survey data. Contrary to our prediction, congeneric tree species often coexisted at the finest spatial scale and significant exclusive distribution was not detected. Our results suggest that cooccurrence of congeneric tree species is not structured by reproductive interference, and they indicate the need for further research to explore the factors that mitigate the effects of reproductive interference.


Biologia ◽  
2014 ◽  
Vol 69 (3) ◽  
Author(s):  
Mirela Perić ◽  
Tvrtko Dražina ◽  
Maria Špoljar ◽  
Ines Radanović ◽  
Biserka Primc ◽  
...  

AbstractAiming to establish the most frequent invertebrate taxa in drift at the small spatial scale within a moss-rich karst tufa-precipitating hydrosystem, we sampled drift among microhabitats differing in substratum type and flow conditions along a tufa barrier-cascading lotic reach. Additionally, we addressed the question of the contribution and the potential significance of meiofauna within the overall invertebrate drift at the small spatial scale. During the study period, a total of 60 invertebrate taxa were recorded in the drift. Six of these taxa belonged to the annelid/arthropod meiofauna and they represented 35% of total drift density. Macroinvertebrates found in drift were represented mainly by larval insects. The composition of the most abundant taxa in total drift was as follows: Alona spp. (Cladocera 26.7%), Riolus spp. (Coleoptera: Elmidae 13.2%), Simulium spp. (Diptera: Simuliidae 12.2%), Enchytraeidae (Oligochaeta 10.4%), Hydrachnidia (6.3%), Orthocladinae (Diptera: Chironomidae 3.9%) and Naididae (Oligochaeta 3.6%). Faunal drift densities and amounts of transported particulate matter (PM) were highest at the fast-flowing sites located at the barriers and lowest at the slow-flowing sites within pools. Similarly to the seasonal amounts of transported PM, faunal drift was lowest in winter, and peaked in autumn and in late spring/early summer. Correlation between flow velocity and PM-faunal drift densities suggested a significant effect of the dislodged PM, though a minor influence of discharge and flow velocity on faunal drift. We suggest that the small-scale habitat heterogeneity and the respective feeding and refugial strategies of the fauna, as well as faunal passive dislodgement initiated by the shear forces of the flow were the most important drivers of observed drift patterns.


2019 ◽  
Vol 99 (06) ◽  
pp. 1309-1315
Author(s):  
Edson A. Vieira ◽  
Marília Bueno

AbstractMany studies have already assessed how wave action may affect morphology of intertidal species among sites that vary in wave exposure, but few attempted to look to this issue in smaller scales. Using the most common limpet of the Brazilian coast, Lottia subrugosa, and assuming position on rocky boulders as a proxy for wave action at small scale, we tested the hypothesis that waves may also influence limpet morphology at a smaller spatial scale by investigating how individual size, foot area and shell shape vary between sheltered and exposed boulder sides on three shores in the coast of Ubatuba, Brazil. Limpets consistently showed a proportionally larger foot on exposed boulder sides for all shores, indicating that stronger attachment is an important mechanism to deal with wave action dislodgement at a smaller scale. Shell shape also varied in the scale investigated here, with more conical (dissipative) shells occurring in exposed boulder sides in one exposed shore across time and in the other exposed shore in one year. Shell shape did not vary regarding boulder sides across time in the most sheltered shore. Although we did not assess large spatial scale effects of wave action in this study, variations of the effect of waves at small spatial scale observed for shell shape suggest that it may be modulated by the local wave exposure regime. Our work highlights the importance of wave action at small spatial scales, and may help to understand the ecological variability of limpets inhabiting rocky shores.


2015 ◽  
Author(s):  
Edward R Abraham ◽  
Philipp Neubauer

Catch-per-unit-effort (CPUE) is commonly used as an index of abundance in fishery stock assessments, but CPUE may be misleading, as a number of global fishery collapses have been attributed to a hyper-stable CPUE. In abalone (Halitidae family) fisheries, CPUE at large spatial scales may be hyper-stable because of aggregating behaviour and serial-depletion, whereby fishers sequentially fish areas with no corresponding decline in CPUE. Obtaining detailed spatial information in abalone fisheries might mitigate this problem, allowing CPUE to be used more confidently in these fisheries. Here, we report on the use of newly-developed high-resolution Global Positioning System (GPS) data loggers in New Zealand's blacklip abalone (pāua, Haliotis iris) fisheries. Using these data loggers, we tested, via a fish-down experiment, if CPUE is a reliable indicator of abundance at a small spatial scale and over a period of months. In the experiment, hyper-stability at small spatial scales occurred at high abundance, but CPUE reflected the estimated depletion level at the end of experimental fishing. This experiment suggests that the GPS data loggers provide a promising avenue to track CPUE at a small spatial scale, and to assess spatial resource use in New Zealand's pāua fisheries.


2000 ◽  
Vol 22 (4) ◽  
pp. 15-19 ◽  
Author(s):  
Sarah Otterstrom

In a small country like Costa Rica, the same climate event can affect neighboring communities in very distinct ways. In the summer of 1998, following an intense El Niño-related drought, I set out to examine how this event had affected small-scale farmers across northern Costa Rica. Surprisingly, there were large differences in coping abilities between farmers of the Caribbean and Pacific regions despite the overall small spatial scale at which my research was conducted.


2014 ◽  
Vol 11 (1) ◽  
pp. 75-90 ◽  
Author(s):  
L. Resplandy ◽  
J. Boutin ◽  
L. Merlivat

Abstract. The considerable uncertainties in the carbon budget of the Southern Ocean are largely attributed to unresolved variability, in particular at a seasonal timescale and small spatial scale (~ 100 km). In this study, the variability of surface pCO2 and dissolved inorganic carbon (DIC) at seasonal and small spatial scales is examined using a data set of surface drifters including ~ 80 000 measurements at high spatiotemporal resolution. On spatial scales of 100 km, we find gradients ranging from 5 to 50 μatm for pCO2 and 2 to 30 μmol kg−1 for DIC, with highest values in energetic and frontal regions. This result is supported by a second estimate obtained with sea surface temperature (SST) satellite images and local DIC–SST relationships derived from drifter observations. We find that dynamical processes drive the variability of DIC at small spatial scale in most regions of the Southern Ocean and the cascade of large-scale gradients down to small spatial scales, leading to gradients up to 15 μmol kg−1 over 100 km. Although the role of biological activity is more localized, it enhances the variability up to 30 μmol kg−1 over 100 km. The seasonal cycle of surface DIC is reconstructed following Mahadevan et al. (2011), using an annual climatology of DIC and a monthly climatology of mixed layer depth. This method is evaluated using drifter observations and proves to be a reasonable first-order estimate of the seasonality in the Southern Ocean that could be used to validate model simulations. We find that small spatial-scale structures are a non-negligible source of variability for DIC, with amplitudes of about a third of the variations associated with the seasonality and up to 10 times the magnitude of large-scale gradients. The amplitude of small-scale variability reported here should be kept in mind when inferring temporal changes (seasonality, interannual variability, decadal trends) of the carbon budget from low-resolution observations and models.


2015 ◽  
Author(s):  
Edward R Abraham ◽  
Philipp Neubauer

Catch-per-unit-effort (CPUE) is commonly used as an index of abundance in fishery stock assessments, but CPUE may be misleading, as a number of global fishery collapses have been attributed to a hyper-stable CPUE. In abalone (Halitidae family) fisheries, CPUE at large spatial scales may be hyper-stable because of aggregating behaviour and serial-depletion, whereby fishers sequentially fish areas with no corresponding decline in CPUE. Obtaining detailed spatial information in abalone fisheries might mitigate this problem, allowing CPUE to be used more confidently in these fisheries. Here, we report on the use of newly-developed high-resolution Global Positioning System (GPS) data loggers in New Zealand's blacklip abalone (pāua, Haliotis iris) fisheries. Using these data loggers, we tested, via a fish-down experiment, if CPUE is a reliable indicator of abundance at a small spatial scale and over a period of months. In the experiment, hyper-stability at small spatial scales occurred at high abundance, but CPUE reflected the estimated depletion level at the end of experimental fishing. This experiment suggests that the GPS data loggers provide a promising avenue to track CPUE at a small spatial scale, and to assess spatial resource use in New Zealand's pāua fisheries.


2013 ◽  
Vol 58 (4) ◽  
Author(s):  
Manuela Parietti ◽  
Matías Merlo ◽  
Jorge Etchegoin

AbstractThe importance of small-scale heterogeneity in local factors which overrides that of larger-scales factors, suggest that local factors play a major role in determining the richness and prevalence of larval digeneans in intertidal gastropods. The restricted distribution of the snail Heleobia australis along a 500 m transect in Cangrejo creek (Mar Chiquita, Argentina) provides a good opportunity to test the assumption that a study at spatial scale of 100s meters can detect spatiotemporal fluctuations of a larval digenean assemblage. To analyze that, 3600 specimens of H. australis were collected seasonally during the year 2011. A quantitative variation and a space-time interaction between sampling points and seasons of the year for the total prevalence of larval digeneans and snail’s densities were found, as well as a positive correlation with abiotic factors. These results revealed that the fluctuations in the community of larval digeneans of the snail H. australis can be detected at small spatial scale, using its natural distribution of 500 m. This study also highlights the importance of seasonality as a factor that must be considered in studies focused on the search for patterns structuring the communities of larval digeneans, at medium and large scales.


2015 ◽  
Author(s):  
Edward R Abraham ◽  
Philipp Neubauer

Catch-per-unit-effort (CPUE) is commonly used as an index of abundance in fishery stock assessments, but CPUE may be misleading, as a number of global fishery collapses have been attributed to a hyper-stable CPUE. In abalone (Halitidae family) fisheries, CPUE at large spatial scales may be hyper-stable because of aggregating behaviour and serial-depletion, whereby fishers sequentially fish areas with no corresponding decline in CPUE. Obtaining detailed spatial information in abalone fisheries might mitigate this problem, allowing CPUE to be used more confidently in these fisheries. Here, we report on the use of newly-developed high-resolution Global Positioning System (GPS) data loggers in New Zealand's blacklip abalone (pāua, Haliotis iris) fisheries. Using these data loggers, we tested, via a fish-down experiment, if CPUE is a reliable indicator of abundance at a small spatial scale and over a period of months. In the experiment, hyper-stability at small spatial scales occurred at high abundance, but CPUE reflected the estimated depletion level at the end of experimental fishing. This experiment suggests that the GPS data loggers provide a promising avenue to track CPUE at a small spatial scale, and to assess spatial resource use in New Zealand's pāua fisheries.


2013 ◽  
Vol 10 (8) ◽  
pp. 13855-13895 ◽  
Author(s):  
L. Resplandy ◽  
J. Boutin ◽  
L. Merlivat

Abstract. The considerable uncertainties in the carbon budget of the Southern Ocean are largely attributed to unresolved variability, in particular at seasonal time scale and small spatial scale (~ 100 km). In this study, the variability of surface pCO2 and DIC at seasonal and small-spatial scales is examined using a dataset of surface drifters including ~ 80 000 measurements at high spatio-temporal resolution. On spatial scales of 100 km, we find gradients ranging from 5 to 50 μ atm for pCO2 and 2 to 30 μ mol kg−1 for DIC, with highest values in energetic and frontal regions. This result is supported by a second estimate obtained with SST satellite images and local DIC/SST relationships derived from drifters observations. We find that dynamical processes drives the variability of DIC at small spatial scale in most regions of the Southern Ocean, the cascade of large-scale gradients down to small spatial scales leading to gradients up to 15 μ mol kg−1 over 100 km. Although the role of biological activity is more localized, it enhances the variability up to 30 μ mol kg−1 over 100 km. The seasonal cycle of surface DIC is reconstructed following Mahadevan et al. (2011), using an annual climatology of DIC and a monthly climatology of mixed layer depth. This method is evaluated using drifters observations and proves to be a reasonable first-order estimate of the seasonality in the Southern Ocean, which could be used to validate models simulations. We find that small spatial scales structures are a non negligible source of variability for DIC, with amplitudes of about a third of the variations associated with the seasonality and up to 10 times the magnitude of large-scale gradients. The amplitude of small-scale variability reported here should be kept in mind when inferring temporal changes (seasonality, inter-annual variability, decadal trends) of the carbon budget from low resolution observations and models.


Sign in / Sign up

Export Citation Format

Share Document