scholarly journals Shifts from cis-to trans-splicing of five mitochondrial introns in Tolypanthus maclurei

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12260
Author(s):  
Runxian Yu ◽  
Chenyu Sun ◽  
Ying Liu ◽  
Renchao Zhou

Shifts from cis-to trans-splicing of mitochondrial introns tend to correlate with relative genome rearrangement rates during vascular plant evolution, as is particularly apparent in some lineages of gymnosperms. However, although many angiosperms have also relatively high mitogenomic rearrangement rates, very few cis-to trans-splicing shifts except for five trans-spliced introns shared in seed plants have been reported. In this study, we sequenced and characterized the mitogenome of Tolypanthus maclurei, a hemiparasitic plant from the family Loranthaceae (Santalales). The mitogenome was assembled into a circular chromosome of 256,961 bp long, relatively small compared with its relatives from Santalales. It possessed a gene content of typical angiosperm mitogenomes, including 33 protein-coding genes, three rRNA genes and ten tRNA genes. Plastid-derived DNA fragments took up 9.1% of the mitogenome. The mitogenome contained one group I intron (cox1i729) and 23 group II introns. We found shifts from cis-to trans-splicing of five additional introns in its mitogenome, of which two are specific in T. maclurei. Moreover, atp1 is a chimeric gene and phylogenetic analysis indicated that a 356 bp region near the 3′ end of atp1 of T. maclurei was acquired from Lamiales via horizontal gene transfer. Our results suggest that shifts to trans-splicing of mitochondrial introns may not be uncommon among angiosperms.

2021 ◽  
Vol 10 (7) ◽  
Author(s):  
Kentaro Miyazaki ◽  
Hikaru Suenaga ◽  
Mamoru Oshiki ◽  
Shuichi Kawano ◽  
Toshikazu Fukushima

ABSTRACT A thiocyanate-degrading bacterium, Thiohalobacter sp. strain COW1, was isolated from activated sludge treating coke oven wastewater, and the complete genome sequence was determined. COW1 contained a single circular chromosome (3.23 Mb; G+C content, 63.4%) in which 2,788 protein-coding genes, 39 tRNA genes, and 3 rRNA genes were identified.


2021 ◽  
Vol 46 (1) ◽  
pp. 162-174
Author(s):  
Ming-Hui Yan ◽  
Chun-Yang Li ◽  
Peter W. Fritsch ◽  
Jie Cai ◽  
Heng-Chang Wang

Abstract—The phylogenetic relationships among 11 out of the 12 genera of the angiosperm family Styracaceae have been largely resolved with DNA sequence data based on all protein-coding genes of the plastome. The only genus that has not been phylogenomically investigated in the family with molecular data is the monotypic genus Parastyrax, which is extremely rare in the wild and difficult to collect. To complete the sampling of the genera comprising the Styracaceae, examine the plastome composition of Parastyrax, and further explore the phylogenetic relationships of the entire family, we sequenced the whole plastome of P. lacei and incorporated it into the Styracaceae dataset for phylogenetic analysis. Similar to most others in the family, the plastome is 158189 bp in length and contains a large single-copy region of 88085 bp and a small single-copy region of 18540 bp separated by two inverted-repeat regions of 25781 bp each. A total of 113 genes was predicted, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Phylogenetic relationships among all 12 genera of the family were constructed with 79 protein-coding genes. Consistent with a previous study, Styrax, Huodendron, and a clade of Alniphyllum + Bruinsmia were successively sister to the remainder of the family. Parastyrax was strongly supported as sister to an internal clade comprising seven other genera of the family, whereas Halesia and Pterostyrax were both recovered as polyphyletic, as in prior studies. However, when we employed either the whole plastome or the large- or small-single copy regions as datasets, Pterostyrax was resolved as monophyletic with 100% support, consistent with expectations based on morphology and indicating that non-coding regions of the Styracaceae plastome contain informative phylogenetic signal. Conversely Halesia was still resolved as polyphyletic but with novel strong support.


2020 ◽  
Vol 21 (13) ◽  
pp. 4685
Author(s):  
Zhenhai Li ◽  
Min Li ◽  
Shannan Xu ◽  
Li Liu ◽  
Zuozhi Chen ◽  
...  

Carangidae are ecologically and economically important marine fish. The complete mitogenomes of three Carangidae species (Alectis indicus, Decapterus tabl, and Alepes djedaba) were sequenced, characterized, and compared with 29 other species of the family Carangidae in this study. The length of the three mitogenomes ranged from 16,530 to 16,610 bp, and the structures included 2 rRNA genes (12S rRNA and 16S rRNA), 1 control region (a non-coding region), 13 protein-coding genes, and 22 tRNA genes. Among the 22 tRNA genes, only tRNA-Ser (GCT) was not folded into a typical cloverleaf secondary structure and had no recognizable DHU stem. The full-length sequences and protein-coding genes (PCGs) of the mitogenomes of the three species all had obvious AT biases. The majority of the AT-skew and GC-skew values of the PCGs among the three species were negative, demonstrating bases T and C were more plentiful than A and G. Analyses of Ka/Ks and overall p-genetic distance demonstrated that ATP8 showed the highest evolutionary rate and COXI/COXII were the most conserved genes in the three species. The phylogenetic tree based on PCGs sequences of mitogenomes using maximum likelihood and Bayesian inference analyses showed that three clades were divided corresponding to the subfamilies Caranginae, Naucratinae, and Trachinotinae. The monophyly of each superfamily was generally well supported. The divergence time analyses showed that Carangidae evolved during three geological periods, the Cretaceous, Paleogene, and Neogene. A. indicus began to differentiate from other species about 27.20 million years ago (Mya) in the early Miocene, while D. tabl (21.25 Mya) and A. djedaba (14.67 Mya) differentiated in the middle Oligocene.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7830 ◽  
Author(s):  
Eugeny V. Gruzdev ◽  
Vitaly V. Kadnikov ◽  
Alexey V. Beletsky ◽  
Andrey V. Mardanov ◽  
Nikolai V. Ravin

Background Parasitic plants have the ability to obtain nutrients from their hosts and are less dependent on their own photosynthesis or completely lose this capacity. The reduction in plastid genome size and gene content in parasitic plants predominantly results from loss of photosynthetic genes. Plants from the family Orobanchaceae are used as models for studying plastid genome evolution in the transition from an autotrophic to parasitic lifestyle. Diphelypaea is a poorly studied genus of the Orobanchaceae, comprising two species of non-photosynthetic root holoparasites. In this study, we sequenced the plastid genome of Diphelypaea coccinea and compared it with other Orobanchaceae, to elucidate patterns of plastid genome evolution. In addition, we used plastid genome data to define the phylogenetic position of Diphelypaea spp. Methods The complete nucleotide sequence of the plastid genome of D. coccinea was obtained from total plant DNA, using pyrosequencing technology. Results The D. coccinea plastome is only 66,616 bp in length, and is highly rearranged; however, it retains a quadripartite structure. It contains only four rRNA genes, 25 tRNA genes and 25 protein-coding genes, being one of the most highly reduced plastomes among the parasitic Orobanchaceae. All genes related to photosynthesis, including the ATP synthase genes, had been lost, whereas most housekeeping genes remain intact. The plastome contains two divergent, but probably intact clpP genes. Intron loss had occurred in some protein-coding and tRNA genes. Phylogenetic analysis yielded a fully resolved tree for the Orobanchaceae, with Diphelypaea being a sister group to Orobanche sect. Orobanche.


ZooKeys ◽  
2018 ◽  
Vol 790 ◽  
pp. 127-144 ◽  
Author(s):  
Qiao-Hua Zhang ◽  
Pan Huang ◽  
Bin Chen ◽  
Ting-Jing Li

To date, only one mitochondrial genome (mitogenome) in the Eumeninae has been reported in the world and this is the first report in China. The mitogenome ofO.a.aterrimusis 17 972 bp long, and contains 38 genes, including 13 protein coding genes (PCGs), 23 tRNA genes, two rRNA genes, a long non-coding region (NCR), and a control region (CR). The mitogenome has 79.43% A + T content, its 13 PCGs use ATN as the initiation codon except forcox1using TTG, and nine genes used complete translation termination TAA and four genes have incomplete stop codon T (cox2,cox3,nad4, andcytb). Twenty-two of 23 tRNAs can form the typical cloverleaf secondary structure except fortrnS1. The CR is 1 078 bp long with 84.69% A+T content, comprising 28 bp tandem repeat sequences and 13 bp T-strech. There are two gene rearrangements which are an extratrnM2located betweentrnQandnad2and thetrnL2in the upstream ofnad1. Within all rearrangements of these mitogenomes reported in the family Vespidae, the translocation betweentrnS1andtrnEgenes only appears in Vespinae, and the translocation oftrnYin Polistinae and Vespinae. The absent codons of 13 PCGs in Polistinae are more than those both in Vespinae and Eumeninae in the family Vespidae. The study reports the complete mitogenome ofO.a.aterrimus, compares the characteristics and construct phylogenetic relationships of the mitogenomes in the family Vespidae.


IMA Fungus ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Shu Zhang ◽  
Yong-Jie Zhang

Abstract Fungal mitochondrial genes are often invaded by group I or II introns, which represent an ideal marker for understanding fungal evolution. A standard nomenclature of mitochondrial introns is needed to avoid confusion when comparing different fungal mitogenomes. Currently, there has been a standard nomenclature for introns present in rRNA genes, but there is a lack of a standard nomenclature for introns present in protein-coding genes. In this study, we propose a new nomenclature system for introns in fungal mitochondrial protein-coding genes based on (1) three-letter abbreviation of host scientific name, (2) host gene name, (3), one capital letter P (for group I introns), S (for group II introns), or U (for introns with unknown types), and (4) intron insertion site in the host gene according to the cyclosporin-producing fungus Tolypocladium inflatum. The suggested nomenclature was proved feasible by naming introns present in mitogenomes of 16 fungi of different phyla, including both basal and higher fungal lineages although minor adjustment of the nomenclature is needed to fit certain special conditions. The nomenclature also had the potential to name plant/protist/animal mitochondrial introns. We hope future studies follow the proposed nomenclature to ensure direct comparison across different studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongxia Yang ◽  
Wenhui Li ◽  
Xiaolei Yu ◽  
Xiaoying Zhang ◽  
Zhongyi Zhang ◽  
...  

AbstractGleditsia sinensis is an endemic species widely distributed in China with high economic and medicinal value. To explore the genomic evolution and phylogenetic relationships of G. sinensis, the complete mitochondrial (mt) genome of G. sinensis was sequenced and assembled, which was firstly reported in Gleditsia. The mt genome was circular and 594,121 bp in length, including 37 protein-coding genes (PCGs), 19 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. The overall base composition of the G. sinensis mt genome was 27.4% for A, 27.4% for T, 22.6% for G, 22.7% for C. The comparative analysis of PCGs in Fabaceae species showed that most of the ribosomal protein genes and succinate dehydrogenase genes were lost. In addition, we found that the rps4 gene was only lost in G. sinensis, whereas it was retained in other Fabaceae species. The phylogenetic analysis based on shared PCGs of 24 species (22 Fabaceae and 2 Solanaceae) showed that G. sinensis is evolutionarily closer to Senna species. In general, this research will provide valuable information for the evolution of G. sinensis and provide insight into the phylogenetic relationships within the family Fabaceae.


2020 ◽  
Vol 9 (17) ◽  
Author(s):  
Dieter M. Tourlousse ◽  
Mitsuo Sakamoto ◽  
Takamasa Miura ◽  
Koji Narita ◽  
Akiko Ohashi ◽  
...  

We report a complete genome sequence of Blautia producta JCM 1471T. The genome consists of a single circular chromosome of 6,197,116 bp with a G+C content of 45.7%. The genome was annotated as containing 5 complete sets of rRNA genes, 70 tRNA genes, and 5,516 protein-coding sequences.


2020 ◽  
Vol 11 ◽  
Author(s):  
Peninah Cheptoo Rono ◽  
Xiang Dong ◽  
Jia-Xin Yang ◽  
Fredrick Munyao Mutie ◽  
Millicent A. Oulo ◽  
...  

The genus Alchemilla L., known for its medicinal and ornamental value, is widely distributed in the Holarctic regions with a few species found in Asia and Africa. Delimitation of species within Alchemilla is difficult due to hybridization, autonomous apomixes, and polyploidy, necessitating efficient molecular-based characterization. Herein, we report the initial complete chloroplast (cp) genomes of Alchemilla. The cp genomes of two African (Afromilla) species Alchemilla pedata and Alchemilla argyrophylla were sequenced, and phylogenetic and comparative analyses were conducted in the family Rosaceae. The cp genomes mapped a typical circular quadripartite structure of lengths 152,438 and 152,427 base pairs (bp) in A. pedata and A. argyrophylla, respectively. Alchemilla cp genomes were composed of a pair of inverted repeat regions (IRa/IRb) of length 25,923 and 25,915 bp, separating the small single copy (SSC) region of 17,980 and 17,981 bp and a large single copy (LSC) region of 82,612 and 82,616 bp in A. pedata and A. argyrophylla, respectively. The cp genomes encoded 114 unique genes including 88 protein-coding genes, 37 transfer RNA (tRNA) genes, and 4 ribosomal RNA (rRNA) genes. Additionally, 88 and 95 simple sequence repeats (SSRs) and 37 and 40 tandem repeats were identified in A. pedata and A. argyrophylla, respectively. Significantly, the loss of group II intron in atpF gene in Alchemilla species was detected. Phylogenetic analysis based on 26 whole cp genome sequences and 78 protein-coding gene sequences of 27 Rosaceae species revealed a monophyletic clustering of Alchemilla nested within subfamily Rosoideae. Based on a protein-coding region, negative selective pressure (Ka/Ks < 1) was detected with an average Ka/Ks value of 0.1322 in A. argyrophylla and 0.1418 in A. pedata. The availability of complete cp genome in the genus Alchemilla will contribute to species delineation and further phylogenetic and evolutionary studies in the family Rosaceae.


2021 ◽  
Vol 10 (48) ◽  
Author(s):  
Yusuke Ogata ◽  
Mitsuo Sakamoto ◽  
Naveen Kumar ◽  
Moriya Ohkuma ◽  
Masahira Hattori ◽  
...  

Here, we report the complete genome sequence of Megamonas funiformis strain 1CBH44, which was isolated from the feces of a healthy Japanese person. The genome consists of a circular chromosome (2,310,709 bp, with a GC content of 31.5%) and possesses 2,170 putative protein-coding genes, 18 rRNA genes, and 54 tRNA genes.


Sign in / Sign up

Export Citation Format

Share Document